Suppression and (re)generation of quarkonium in heavy-ion collisions at the LHC EMMI Rapid Reaction Task Force GSI, Darmstadt, Germany - December 16-20, 2019

Transport model from Tsinghua Group

Baoyi Chen

collaborate with Pengfei Zhuang

Transport equation

Transport model

Pengfei Zhuang, Xianglei Zhu, Yunpeng Liu, Kai Zhou, Baoyi Chen, et al

2

$$\frac{\partial f_{\psi}}{\partial t} + \frac{\vec{p}_{\psi}}{E} \cdot \vec{\nabla}_{x} f_{\psi} + \vec{F} \cdot \vec{\nabla}_{p} f_{\psi} = -\alpha_{\psi} f_{\psi} + \beta_{\psi}$$
Phase space density Hot medium effect
$$\alpha_{\psi}(\vec{p}_{t}, \vec{x}_{t}, \tau, \vec{b}) = \frac{1}{2E_{t}} \int \frac{d^{3}\vec{k}}{(2\pi)^{3}2E_{g}} \sigma_{g\psi}(\vec{p}, \vec{k}, T) 4F_{g\psi}(\vec{p}, \vec{k}) f_{g}(\vec{k}, T)$$

$$\beta_{\psi}(\vec{p}_{t}, \vec{x}_{t}, \tau, \vec{b}) = \frac{1}{2^{4}(2\pi)^{9}E_{t}} \int \frac{d^{3}\vec{k}}{E_{g}} \frac{d^{3}\vec{q}_{c}}{E_{c}} \frac{d^{3}\vec{q}_{c}}{E_{c}} \frac{d^{3}\vec{q}_{c}}{E_{c}} W_{c\bar{c}}^{\psi g}(\vec{q}_{c}, \vec{q}_{\bar{c}}) \int f_{c}(\vec{q}_{c}, T) f_{\bar{c}}(\vec{q}_{\bar{c}}, T)$$

$$\times (2\pi)^{4} \delta^{(4)}(p+k-q_{c}-q_{\bar{c}})$$

$$N^{c\bar{c} \rightarrow J/\psi} \sim (N^{c\bar{c}})^{2}$$

Philosophy: charmonium states can survive and regenerated

inside QGP with $T > T_c$

V = U									
State	$J/\psi(1S)$	$\chi_c(1P)$	$\psi'(2S)$	$\Upsilon(1S)$	$\chi_b(1P)$	$\Upsilon(2S)$	$\chi_b(2P)$	$\Upsilon(3S)$	$H\Psi = E\Psi$
T_d/T_c	2.10	1.16	1.12	>4.0	1.76	1.60	1.19	1.17	

Transport equation

Transport model

 \succ decay rate α_{ψ} :

Pengfei Zhuang, Xianglei Zhu, Yunpeng Liu, Kai Zhou, Baoyi Chen, et al

$$\frac{\partial f_{\psi}}{\partial t} + \frac{\vec{p}_{\psi}}{E} \cdot \vec{\nabla}_{x} f_{\psi} + \vec{F} \cdot \vec{\nabla}_{p} f_{\psi} = -\alpha_{\psi} f_{\psi} + \beta_{\psi}$$

$$\alpha_{\psi}\left(\vec{p}_{t},\vec{x}_{t},\tau,\vec{b}\right) = \frac{1}{2E_{t}} \int \frac{d^{3}\vec{k}}{(2\pi)^{3}2E_{g}} \boldsymbol{\sigma}_{g\psi}\left(\vec{p},\vec{k},T\right) 4F_{g\psi}\left(\vec{p},\vec{k}\right) \boldsymbol{f}_{g}\left(\vec{k},T\right)$$

 $\sigma_{g\Psi}(w) = A_0 \frac{(w/\epsilon_{\Psi} - 1)^{3/2}}{(w/\epsilon_{\Psi})^5}$

 $J/\psi + g \rightarrow c + \bar{c}$

 $c + \bar{c} \rightarrow I/\psi + g$

3

Color screening effect: included by taking a in-medium binding energy in $\sigma_{g\psi}$ (1)take a constant (500MeV)

\succ Regeneration term β_{ψ}

- Proportional to <u>charm and anti-charm quark density in (x,p)</u>, and <u>cross section</u>
- ② Regeneration can happen inside QGP and also at the hadronization surface
- ③ Regenerated charmonium depends on charm evolution (flow):

Charm quark kinetic equilibrium (strongly coupled with QGP): 1) momentum distribution : $f_c(\vec{q}_c, T)$ normalized fermi-distribution 2) spatial distribution : $\partial_{\mu}(\rho_c u^{\mu}_{OGP}) = 0$ u^{μ}_{QGP} : hydro fluid velocity

CNM effect & QGP expansion

CNM effect:

Charmonium yield

5.02 TeV, Pb-Pb,

Up and low limits: $d\sigma_{pp}^{c\bar{c}}/dy$ shifted $\pm 20\%$

Charmonium vield 1.0 1.4 $\psi(2S)$ w/o rege. lyl<1.6, 0-100% 1S-up •••••• $\psi(2S)$ with rege. 1.6<lyl<2.4, 0-100% 0.8 1.2 Prompt charmonium lines: lyl<1.6 √s_{NN}=5.02 TeV Pb-Pb **P**^{ψ(2S)}/**B**^{J/ψ}/B^{J/ψ}/B^{J/ψ}/B^{4A}/ **Cent. 0-10%** 1.0 1S 5.02 TeV Pb-Pb 0.8 R_{AA} 2S-up Up and low limits: 0.6 1S-low $d\sigma_{pp}^{c\bar{c}}/dy$ shifted $\pm 20\%$ 0.4 25 0.2 2S-low 0.2 0.0 5 10 15 20 0.0 p_{_} (GeV/c) 10 0 2 4 6 12 14 8 рт Charmonium 5TeV, Chin.Phys. C43 (2019), 124101 1.0 1.4 $\sqrt{s_{NN}}$ =5.02 TeV Pb-Pb • prompt J/ψ $\sqrt{s_{NN}}$ =5.02 TeV Pb-Pb ····· initial 35 6.5<p_<30 GeV/c prompt ψ(2S) 1.2 - - regenerated ····· Central Rapidity s_{NN}=5.02 TeV Pb-Pb 0.8 2.5</y> 2.5 2 lyl<1.6 30 — Forward Rapidity inclusive Cent. 20-40% 1.0 Ivl<0.9</p> Inclusive J/ ψ ¥^{0.6}⊢ ₽ 25 • 2.5<lyl<4 ₹ **4** 0.6 v2^Ψ(%) 20 0.6 15 0.4 10 **J/**ψ 0.4 I 0.2 5 0.2 ψ**(2S)** 0^L 3 7 8 9 2 5 6 10 4 0.0 0.0^L

100

100

200

Np

300

400

200

Np

300

400

p_{_} (GeV/c)

bottomonium

Parameters:

bottomonium binding energy in medium is taken as (60%, 80%) of the vacuum value to consider the different color screening effects from QGP.

bottomonium

No regeneration included in the below calculations

Both figure absent regeneration

summary

This slide briefly introduce the details of Tsinghua Transport model,

and also show some results about charmonium and bottomonium

at 5 TeV

Thank you for your attention !

End