SMI-2023: 14th International Conference on Stopping and Manipulation of Ions and Related Topics

Contribution ID: 51

Type: Invited talk

Trapping and laser spectroscopy of triply charged thorium ions towards a nuclear clock

Wednesday, 10 May 2023 14:00 (30 minutes)

The energy of the first-excited nuclear state of Thorium-229 (229m Th) is so low that it can be excited from the ground state by a vacuum ultraviolet laser. One of the applications is a nuclear clock: an atomic clock based on the nuclear transition between the ground state and 229m Th. An ion trap is an optimal system for the nuclear clock because the quantum states of the 229 Th ion in a trap can be precisely controlled by laser cooling.

We developed an RF carpet gas cell to obtain a low-energy 229 Th ion beam which was used as an ion source for our ion trap experiment. The 229 Th recoil ions emitted from 233 U were cooled by collisions with a helium buffer gas and extracted as a low-energy ion beam by an RF carpet. Since 2% of recoil 229 Th ions from 233 U is 229m Th, laser spectroscopy of trapped 229m Th ions can be performed by attaching the ion trap to the gas cell developed in this study. Such measurements provide more detailed knowledge of this unique nuclear state. In this presentation, we present details on our experiments on trapping and laser spectroscopy of triply charged thorium ions.

Primary authors: Dr YAMAGUCHI, Atsushi (Quantum Metrology Laboratory, RIKEN); Dr SHIGEKAWA, Yudai (Nishina Center for Accelerator-Based Science, RIKEN); Dr HABA, Hiromitsu (Nishina Center for Accelerator-Based Science, RIKEN); Prof. WADA, Michiharu (KEK Wako Nuclear Science Center); Prof. KATORI, Hidetoshi (Quantum Metrology Laboratory, RIKEN)

Presenter: Dr YAMAGUCHI, Atsushi (Quantum Metrology Laboratory, RIKEN)

Session Classification: Plenary Session 9