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BARIUM TAGGING FOR ONUBB

= Barium ion is only

136Xe > 13%Ba+ e + e

produced in a true 33
decay, not in any other allowed Bp fo
radioactive event. - v,

= Identification of Baion
plus ~1% FWHM
energy measurement
would give a
background-free
experiment.

= Is it plausible to detect
an individual barium

neutrinoless B €

ion or atom in a ton of
Xe gas?
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s MFI N Concept to adapt SMFI for Ba tagging:
D.R. Nygren, J.Phys.Conf.Ser. 650 (2015) no.1, 012002
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= A non-fluorescent molecule becomes fluorescent (or vice versa)
upon chelation with an incident ion.
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- Many Ca?* sensing molecules shown also to sense Ba?*

Phys. Rev. Lett. 120

- SMFI Enables single ion sensing sensing using fluorescence microscopy techniques. (2018) 13, 132504
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ISSUES WITH THE FLUO FAMILY FOR DRY SENSING

Deprotonation of carboxylic acids is
required to accept the ion

7\

CO,H CO,H  CO,H CO,H

Fluo 3-Ca complex

Fluorescein does not shine dry




Out with the old...
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NEXT is producing novel fluorophores
specially engineered for dry, in-gas SMFI.

And in with the new!

Sci. Rep. 9, 15097 (2019)
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ACS Sens 2021, 6, 1, 192202 Nature 583 (2020) 7814, 48-54
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HIGH PRESSURE GAS SMII
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* Novel fluorescence microscopes
developed for operation over large
surfaces in high pressure gases.

|| Abbe Limit
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Single molecule resolution achieved
in high pressure xenon gas over 1x1
mm?, working at at the Abbe
diffraction limit.

Single Ba?* + chemosensor
complexes imaged in Xe gas > first
demonstration of single Ba?* imaging

in a working TPC medium. @
Paper in prep.
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An addition to the toolkit...
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Scanning
Tunneling
Microscopy (STM)

DYNAMICS OF BINDING (="

= Recent work has studied
mechanisms of ion binding in
NEXT barium sensing Nat.Comm.13,
molecules.
7741 2023,

= Barium perchlorate evaporated
in vacuum onto sub-monolayer
of crown ether chemosensors. 1. STM is used to 2. XPS reveals Ba- 2. STS add

- . aadresses

tagging chemical chelation-related M.O

= Molecules chemically react
with the Ba[ClO,], to capture
the Ba%* into the receptor.

= Combination of STM, XPS and
STS illuminates changes in
electronic configuration,
studying mechanism of the
feaciuon at single molecule
evel.
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RF CARPETS FOR NEXT | = .. .-

region region

E_ D € R Field
The field of view of our demonstrated sensor is Eds = L - f\”i?ﬁi‘%ies
~1lmm? - we now need to either: 7\ ‘ ]__RF Carpet

= R) Deliver the ion to those sensors Region
= B) Deliver the sensors to the ion m) i f 5

- One potentially plausible way to do (&) is
through fine-pitch RF carpets.
MG+ AR
= What is the ultimate pressure limitation of soo] oo e | ++
this technique? —+ +
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= In 1bar+ xenon, breakdown through gas is not — : i

limiting, breakdown through insulator is. $ 300 | -+ +

| ++ +‘+‘
| —+ +_+_ ++
. . 2001 | — T RS

= We are exploring 4-phase traveling wave + 4+

systems (no surfing, no DC drag field). | ~ JINST (2020) 15 P04022

Pd [Torr cm]
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STABILITY CRITERIA — VISCOUS MODEL

(this work much inspired by: S. Schwarz, IIMS 299 (2011) 71-77)
= Stable ion motion is only possible when pseudo-potential well exists. o0

O
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0.125 A

> 0.075

First part of our calculation extends the work of Schwartz to find 0.050 1
the pseudopotential and drag speed in an N-phased array. 0.025 |
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Vmax=300V (Vpp=300V), q=2
Mean well-to-wall distance 1.2 Vimax=300V (Vpp=300V), g=1
> 1.0
~ ‘§ 0.8 - This example shows a
m (D2 + 92) Epush N 3 % stable trap for Ba++ but
p Ty not for Ba+
VPP Z S 0.6
2q T 2
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L Criterion for existence of a minimum - :
Next few slides all draw from: 0.0
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B.J.P Jones et. al. (NEXT collab), NIMA 1039 (2022) 167000 v Distance above carpet / pitches
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STOCHASTIC/ BROWNIAN LOSSES

= Stable ion motion is only possible when an
effective potential well exists.

= This is necessary but not sufficient condition,
since even for trapped ions, collisions with gas
molecules can kick them into walls, which
dominates losses.

= Typically the only way to model stabilitY is to
simulate collision-by-collision. Generally the
community finds these simulations reliable.

= But at these pressures the simulations take days.

= Can we account for these fluctuations analytically

somehow, to make this problem tractable at high
buffer gas density?

Travel distance (mm)

30 A

25 A

N
o
1

=
(%)
1

=
o
1

Example: 10 ¢
ions at a variety
of RF voltages °
O
O
®
O
2 O
o
| . ‘
i L

SIMION simulation example

240 260 280 300 320 340 360
Vpp

©




THERMALIZATION CONJECTURE

= Idea: 1ions are colliding constantly with
Maxwellian gas to thermalize into the
effective potential at finite temperature.

= A non-trivial conjecture since the trapping
potential is emergent, and T of RF-driven
ions is not necessarily well defined.

= However, it works and is predictive!
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KINETIC LOSS RATES

= On its own, thermalized distribution is not enough to predict loss rates - evolution with losses is a
non-thermal-equilibrium scenario.

= However, adding a little kinetic theory into the mix, we can accurately predict flux from
approximately thermal distribution into the walls.
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MOBILITY (AS AN INPUT)

Understanding the RF carpet design criteria involves ® Data (Medina)
understanding microscopic behavior of drifting Ba™ — Best Fit (Medina)
+ stat & syst 1o
Y Theory Ba+ (McGuirk)
»= s [Bal]+ & [BaXel+
= Al Species (this work)
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In Ba™, situation is already somewhat complex due to
molecular ion formation:
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Mobility and Clustering of Barium Ions and Dications in High Pressure Xenon Gas @
Phys.Rev. A97 (2018) no.6, 062509




Reduced Mobility / cm?V~1s?!

FOR BA++ THE
CLUSTERS ARE BIGGER:
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Bigger clusters more similar to each other, so less
pressure dependence in Ba++ than Ba+.
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ION DRIFT MICROPHYSICS FOR QUANTITATIVE PREDICTIONS

= Putting it all to use in xenon at high pressures involves some non-trivial calculations to
obtain molecular ion masses and mobilities that determine the RF carpet dynamics.

1250

1200 -

1150 -

1100 4

1050 -

1000 -

Average cluster mass (amu)

950 -

900

Mobility (cm2V-1s-1)

0.0

2.5

50 7.5 10.0 12.5 15.0
Pressure (bar)

1003

10_13

—— [BaXe]** j=6
—-—- [BaXe]** j=f(p)

0.0

2.5

50 7.5 10.0 12.5 15.0
Pressure (bar)

Pseudopotential / (kB T)

Inputs to
pseudo
potential

7.5 A

w
o
1

b
w
1

0.0

Probability (arb)

o
o

N=4, V,ax=800

0.5 1.0 1.5 2.0 2.5 3.0
Distance above carpet / pitches



PREDICTED KINETIC LOSS RATES
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EXPERIMENTAL TESTS

= We are preparing experimental tests of - i
these predictions at UTA. We have a
home-brewed Ba?* source.

aweji4

Shell Lens Extr:
20 A ! : .-__|
1 | e
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\ Crucible

“ \ Developed a benchtop ion beam system based on
vaporization followed by multiple impact ionization to
breed Ba?*.

Ceramic &
Mo crucible

Tungsten
holder

(We can also do 1+ ions using aluminosilicate sources.)

A Compact Dication Source for Ba2+ Tagging and Heavy Metal lon Sensor Development @
arXiv:2303.01522



lon Current (A)

le—-13

Also producing other gas-phase
metal ions (Pb2+, Cd2+, etc), for
environmental assay
applications -

lon Current (A)
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RF CARPET DRIVE SYSTEM

= We are using an N=4 phased approach ?
(no DC sweep or surfing wave)

RF carpet PCB
loaned by Max
Brodeur.

= MHz broadband amplifiers fed by 90 degree- Tuanks max:
shifted signals from a signal generator.

= RF amplifier is coupled to carpet through 2x
center-tapped transformers.

= Transformer windings are tuned for Few MHz “sweet spot”

impedance matching. :

= Frequency on RF resonance at ~2MHz.

Gain in dB
£
Amplitude(volts)
(=]

= No ions flying yet, but soon!! - ~40 ]

10* 10° 108 107 108 10°
Frequency in Hz

-1.00 -0.75 -0.50 -0.25 000 025 050 075 100
Time(sec) le—-6




THERE'S PLENTY OF ROOM (AND
NECESSITY) AT THE BOTTOM. ..

= The carpet we are borrowing from
Maxime has 160 um pitch, predicted to
top out a bit under 1 bar in Xe.

= Photo shows SEM of device made at UTA
Nanofab.

a)

= Electrode pitch few ym achieved, with —
very high quality edges.

V1=4.055pum

= Plan to wire-bond between subarrays for
N-phases (distance limit of this not yet
clear).
V2=1.960 um

= We think we can do this at 10cm scale in
house.

EHT= 600kV Fill= 238 A ‘Serial No. = SUPRA 55VP-23.90

. Mag= 2500KX Extl Monitor = 1741 yA Dot 200ec 2022 Tene 232100
= If so, several bar operation should be e e e R oottt yotpel
possible. A | BE

Credit: Vivek Khichar, UTA



LARGE TEST SYSTEM

= Available 1.2 m diameter test
system with gas circulation and
purification.

= Thermionic source can be actuated
with internal robotic arm to any
theta/phi.

= When we eventually get there, we
are set up to test big carpets...

= We also welcome collaborators if
anyone is interested to use this
system for RFC work!




CONCLUSIONS

= Single ion sensors based on SMFI with novel organic fluorophores demonstrated that
can image single Ba?* ions over lmm? surface areas.

= Concentrating ions onto sensors remains a difficult / unsolved problem.

= High pressure RF carpets look hard, but may be a viable solution for large surface
sensitization.

= We have extended prior calculational techniques to apply them to high density media
where losses are dominated by Brownian terms.

= We are ramping up an experimental program to test these models and explore the
prospects of high pressure RF carpet operation for Onubb.
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