Isochronous mass spectrometry and beam purification methods in an electrostatic storage ring

Viviane C. Schmidt NUSTAR Meeting 2022

Dr. Manfred Grieser

Table of content

Isochronous operation of the Cryogenic Storage Ring (CSR)

Mass measurements at CSR

- Frequency measurements
- Time-of-Flight (ToF) measurements

Beam purification methods

- During isochronous operation
- During standard measurements

Electrostatic Cryogenic Storage Ring (CSR)

- Fully electrostatic
- Beam energies: (20 300) keV
- Cryogenic operation: T<10 K, $\rho < 1000 \text{ cm}^{-3}$
- Mostly astro-physically relevant collision experiments: molecular ions + photons/e-/atoms

Contamination: Molecular isobars

- Molecules with same integer mass Δm
- $\frac{\Delta m}{m} \approx 10^{-5}$
- Mass independent storage inside CSR
- Beam cleaning before injection difficult
- -> Identification and removal inside CSR

	D – D ⁺	4 u
о – н ⁺		17u
c-c< ^H	C – N [–]	26 u
C-C-C-C-O ⁻	$\begin{array}{c} \mathbf{O} - \mathbf{O}^{-} \\ \mathbf{I} & \mathbf{I} \\ \mathbf{O} - \mathbf{O} \end{array}$	64 u

Time-of-Flight (ToF) mass measurements

Time-of-Flight (ToF) mass measurements

Isochronous condition

- Revolution time only depend on mass
- Slip factor η
- *T* dependence on ΔE (1st order)
- Isochronous condition $\eta = 0$
- *T*only dependent on *m*

Isochronous mass measurements:

$$\eta = \frac{\Delta f / f}{\Delta p / p}$$

$$\frac{\Delta T}{T_0} = \frac{1}{2} \frac{\Delta(m/Q)}{m_0/Q_0} - \frac{\eta \Delta(E/Q)}{\frac{2}{E_0}}$$

$$\frac{f_0}{f} = \frac{T}{T_0} = \sqrt{\frac{m/Q}{m_0/Q_0}}$$

Realization of isochronous condition

7

Different modes of CSR

- 16 quadrupoles shape the ion beam
- Can be grouped together in "families"
- Different modes available at CSR
 - 1. "Standard mode" (long lifetimes)
 - 2. "Isochronous mode"

(mass measurements)

- Influence betatron oscillations
- Determine dispersion function

Different modes of CSR

- 16 quadrupoles shape the ion beam •
- Can be grouped together in "families"
- Different modes available at CSR
 - 1. "Standard mode" (long lifetimes)
 - 2. "Isochronous mode" (mass measurements)
- Influence betatron oscillations
- Determine dispersion function .

Diagnostics for mass measurements at CSR

- Frequency measurement
 - Pick-up electrode

- Time-of-Flight method (ToF)
 - Single particle detector

$$\frac{f_0}{f} = \frac{T}{T_0} = \sqrt{\frac{m/Q}{m_0/Q_0}}$$

Beam parameters

- Beam energy: 150 keV
- Room temperature
- $p \approx 10^{-11}$ mbar

- Isotopes of WC⁻
- Production in sputter source •
- Different integers masses inside CSR

A (u)	Isotope
194	$^{182}W^{12}C^{-}$
195	$^{183}W^{12}C^{-}$
196	¹⁸⁴ W ¹² C ⁻

Frequency measurement

- Measurement of 4th harmonic
- Three masses visible
- 1 Hz resolution of spectrum analyzer
- ¹⁸⁴W¹²C⁻ used as reference

lon	m _{ex}	$m_{ex} - m_{theo}$	
		m_{ex}	
¹⁸³ W ¹² C ⁻	194.95127 u	2.58x10 ⁻⁶	
¹⁸² W ¹² C ⁻	193.94988 u	5.81x10 ⁻⁶	

Frequency measurement: Molecular isobars

Molecule	Theo. mass (u)		
H ₂ D ⁺	4.02920		
D ₂ ⁺	4.02765		

Measured mass for D_2^+ : 4.02766 u

$$\frac{\Delta m}{m} = 2.5 \times 10^{-6}$$

Detector measurement

Movable detector

- 1. Neutral position
 - Collects neutral fragments
 - Residual gas collisions
- 2. Halo position
 - At the edge of beam
 - Collects ions with large betatron oscillations

ToF spectrum

Reference: ¹⁸⁴W¹²C⁻

- ¹⁸³W¹²C⁻
- ¹⁸²W¹²C⁻
- ¹⁹⁷Au⁻

For constant *Q*:

$$\frac{\Delta T}{T_0} = \frac{\Delta \sqrt{m}}{\sqrt{m_0}}$$

ToF spectrum: Molecular isobars

Beam purification

Purification: Deflector kick

- Different species separately bunched
- Separation between bunches oscillates with storage time
- Fast switch at one deflector
- Apply kick to push bunches on unstable trajectories

Purification: Deflector kick

Storage time t (s)

March 2nd, 2023

17

RF - Excitation

- Oscillating potential on drift tube
- Modification of the ions' velocity
- $f_{RF} \approx n \cdot f_{rev}$:
- 1. Non-isochronous operation: bunching of the ions
- 2. Isochronous operation: excitation out of ring acceptance

RF - Excitation

The "standard mode" of CSR

- Main research field at CSR: Molecular astrophysics
- Requires very long beam lifetimes (10³ s)
- Experiments performed in socalled "standard mode"
- Isochronous operation for diagnostics
- Fast de-bunching during "standard mode"

#Counts

Standard mode: De-bunching suppression through RF

- Oscillating potential on drift tube
- Modification of the ions' velocity
- $f_{RF} \approx n \cdot f_{rev}$:
- 1. Non-isochronous operation: bunching of the ions

t modulo T_o (us)

Standard mode: De-bunching suppression through RF

#Counts

Storage time t (s)

Without RF

With RF

t modulo T₀ (us)

March 2nd, 2023

NUSTAR Meeting 2023

Standard mode: Deflector kick

- Fast switch at one horizontal deflector
- Apply kick to push bunches on unstable trajectories

Kick

Storage time t (s)

Standard mode: Cleaning methods under development

- Energy modification out of ring acceptance
 - 1. Using the RF
 - Modification of RFfrequency during bunching
 - 2. Using the Electron cooler
 - Modification of the electron velocity during cooling

Summary and Outlook

- First isochronous operation of an electrostatic storage ring
 - $\frac{\Delta m}{m} < 10^{-5}$
 - Sensitivity for relative fractions down to 0.02%
- Beam purification methods at CSR
 - Deflector kick
 - RF excitation
 - Also methods for nonisochronous operation

Review of cientific Instruments	ARTICLE	scitation.	org/journal/rs	i
Isochronous mass spectrometry				
in an electrostatic storage ring				
Cite as: Rev. Sci. Instrum. 93, 063302 (2022); doi: 10.1063/5.0090131 Submitted: 3 March 2022 • Accepted: 18 May 2022 • Published Online: 16 June 2022		West Drive	to Emph Class	
Manfred Grieser, 🔤 😳 Viviane C. Schmidt, 🔟 Klaus Blaum, Florian Gru Ábel Kálosi, 🖄 😨 Holger Kreckel, 😰 Damian Müll, Öldřich Novotný, Fo	ssie, ¹ 🐻 Ro lix Nuesslei	bert von Ha n, ¹ 😳 and	ahn, Andreas W	/olf ¹ 🖸
AFFILIATIONS				
Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germa				
² Columbia Astrophysics Laboratory, Columbia University, New York, New York 1002	7, 0 SM			

Acknowledgments

Manfred Grieser Viviane C. Schmidt **Klaus Blaum** Florian Grussie Robert von Hahn Ábel Kálosi Holger Kreckel Damian Müll Oldřich Novotný **Felix Nuesslein** Andreas Wolf

