

AppLHy! – Transport and Application of Liquid Hydrogen

Michael Wolf, KIT, 28.03.23

Hydrogen flagship projects

[¬] Project duration: 04/2021 – 03/2025

[¬] Funding: approx. 705M €

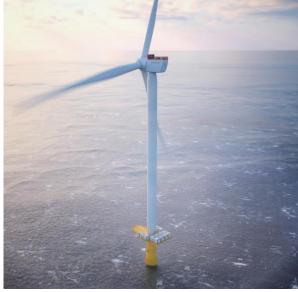
¬ > 230 Partners

The three hydrogen flagship projects are a central contribution of the Federal Ministry of Education and Research (BMBF) to the implementation of the National Hydrogen Strategy. Taken together, they represent one of the BMBF's largest funding initiative on the subject of energy transition.

Flagship Project H₂Giga Flagship Project H₂Mare

H₂Giga

H₂Giga researches and develops technologies for the industrialization and upscaling of water electrolysis – a prerequisite for producing green hydrogen on a gigawatt scale.


Photograph ©: Siemens Energy AG, thyssenkrupp AG, H-TEC Systems GmbH, ITM Power Linde GmbH, Sunfire GmbH (from top left to bottom right)

and Research

H_2Mare

H₂Mare is researching the offshore production of green hydrogen and other Power-to-X products with novel wind energy applications. They have an integrated electrolyser and storage tank and do not require a grid connection.

Source: © Siemens Gamesa Renewable Energy

and Research

TransHyDE

Project duration: 04/2021 – 03/2025
83 + approx. 20 associated partners

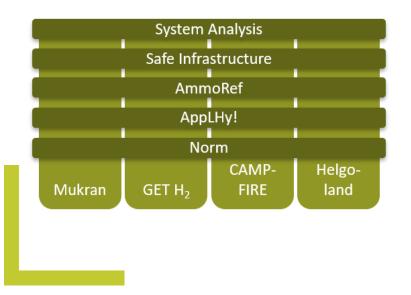
Project volume: approx. 181M €,
 Funding: approx. 135M €

TransHyDE develops various supra-regional storage and transport infrastructures for green hydrogen, evaluates, demonstrates and scales them up.

Coordinators

Robert Schlögl

Mario Ragwitz



Jimmie Langham cruh21 enabling energy innovation

Hydrogen Flagship Project TransHyDE | Office Communication and Coordination

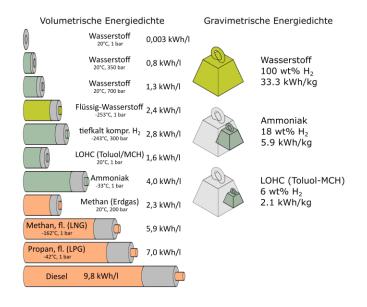
Organizational Structure

- Four projects are implementing pilots for H₂ transport technology options and demonstrating industrial scaling.
- They are supported by five research associations through
 - [¬] developing solutions to obstacles that arise.
 - valuation of technologies and necessary framework conditions.
 - developing an implementation plan as a recommendation to policy makers.

Bundesministerium für Bildung und Forschung

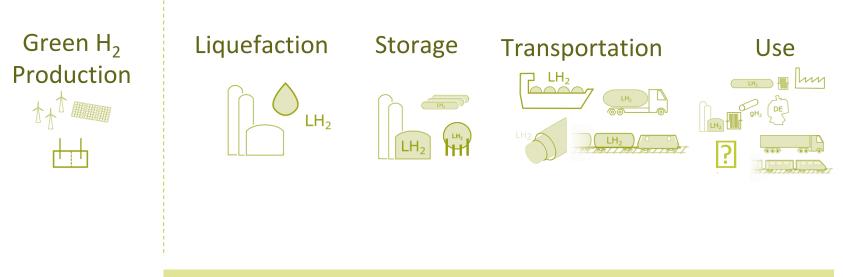
TransHyDE-Project AppLHy! – Transport and Application of Liquid Hydrogen (LH₂)

- [¬] Project duration: 04/2021 03/2025
- [¬] Project volume: approx. € 17 million, funding: approx. € 15 million
- 8 partners, 1 associated partner



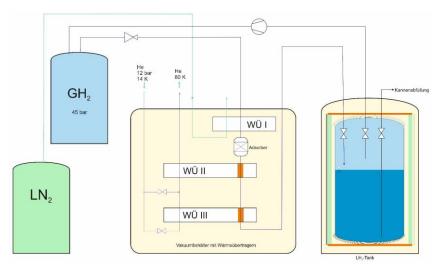
GEFÖRDERT VOM

Properties and advantages of liquid hydrogen (LH₂)


- [¬] moderate volumetric (2.4 kWh/l) and high gravimetric (33.3 kWh/kg) energy density
- [¬] High purity
- [¬] Storage & transport at low pressure
- [¬] Energy requirement (renewable) for H₂ liquefaction at the point of H₂ generation
- [¬] No high temperatures needed for H₂ release
- Ready for use as fuel e.g. in commercial vehicles, trains, ships, airplanes and in industrial scale use for decades (e.g. semiconductor industry, aerospace)

Liquid Hydrogen (LH₂) supply chain

AppLHy! addresses relevant aspects along the LH₂ supply chain


SPONSORED BY THE

TransHyDE Karlsruher Institut für Technologie

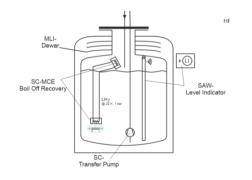
Flagship Project

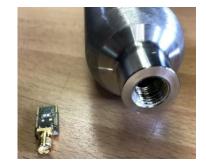
Hydrogen liquefaction

[¬] Key parameters of the H₂ liquefier under development at KIT:

[¬]LN₂ pre-cooling

[¬] Further cooling & OP-Shift using a Helium mass flow from an 600 W Helium cryoplant

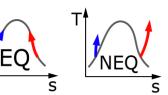

Targeted LH₂ flow rate: ~ 175 l/h
 LH₂ storage capacity: ~ 2000 l LH₂


SPONSORED BY THE

Efficient hydrogen storage

- Research into efficient, integrated LH₂ storage and the components required for this, such as
 - [¬] Contactless LH₂ level measurement
 - [¬] Re-liquefaction
 - [¬] LH2 pumps

- ¹ Damping of surface acoustic waves (SAW) in LH2 confirmed
- SAW sensors are working in LH2 and can be used as LH2 level meter


GEFÖRDERT VOM

Focus: improve efficiency of LH₂ distribution

1. Modelling & Simulation of LH2 distribution chain

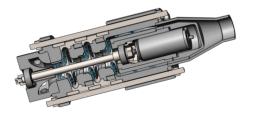
- Software tool for LH₂ distribution is developed
- it includes typical operation required for LH2-handling: de-pressurization of vessel by venting, loading of vessel by liquid, transport with heat inleak, pressurization by means of LH2-evaporation, off-loading, sloshing etc.
- It is based on equilibrium approach (for sloshing and T de-pressurization) as well as on non-equilibrium approach for other operations

2. Observations / Learning

- Considerable difference in results between equilibriumbased and non-equilibrium-based approach
- Rapid operations are more efficient in terms of liquid loss
- Development of accelerated procedures and corresponding hardware components is required to take the advantages of rapid loading

3. Development of centrifugal LH2 pump

- Centrifugal LH₂ pump can help to accelerate LH₂ transfer processes and make them more efficient
- First centrifugal LH2 pump is available from Linde's Cryostar

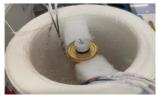


für Bildung und Forschung

Bundesministerium

TU Dresden

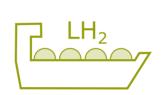
Novel LH_2 turbo pump with ball bearing for filling of LH2 tanks (low pressure)


Status

- Design of the impeller completed
- Pump in detailed engineering
- x Choice of bearing ongoing

ScIDre GmbH

Cryopump with superconducting bearings


Status

- Positioning of superconducting bearings tested in LN₂
- Safety assessment and analysis of natural frequencies completed

LH₂ Transport options

LH₂ Delivery Trailer / Truck
 Status: in operation in Germany

Flagship Project

 LH_2

രെ

TransHvDE

[¬] LH₂ ships ^[7,11,12]

Status: capacity of largest LH_2 ship: 1250 m³ (~ 90 t) LH_2 designs ongoing for ships up to 160.000m³ (~10.000 t) Large-scale import hubs for LH_2 are not existing yet.

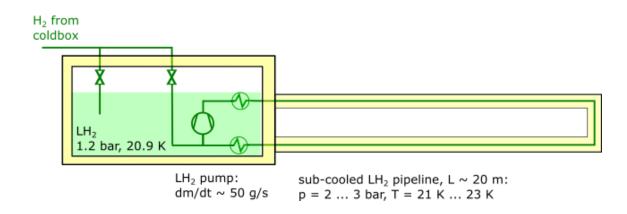
[¬] Railway tank wagon ^[6]

[¬] Status: in operation – but not in Germany

[¬]LH₂-Pipelines ^[6,13]

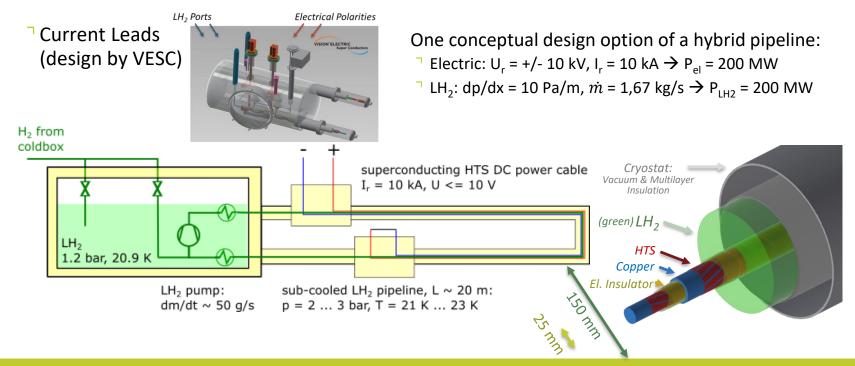
Status: in operation only in industrial facilities

Trailer-based LH₂ supply chain exists, international supply chain needed


SPONSORED BY THE

LH₂ pipeline

H₂ massflow from the liquefier coldbox is expanded in a LH₂ pump cryostat.
 LH₂ pump + heat exchangers supply a LH₂ pipeline with 50g/s sub-cooled LH₂



Hybrid pipeline = superconducting power cable + LH_2 pipeline

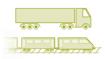
SPONSORED BY THE

Techno-economic case study of a hybrid pipeline

Considering Existing Network & Grid Development Plans

		Gas (2032)	[–] B	Brunsbüttel
	\equiv	Fernleitungen Deutschland Modellierungsergebnisse Leitunge	en	LNG Terminal (2022/2023): In Future
Heide/West Büttel Bithsbiittel Stade		Modellierungsergebnisse Leitunge Wasserstoff (2032) Wasserstoffleitungen gemeldet: Umstellung Neubau Strom (2035) Startnetz NEP 2021 Wechselstrom: Netzverstärkung in bestehender Tra Gleichstrom: Neubau in neuer Trasse Offshore (2035) Zubau DC-Anbindungssystem C2035 Zubau DC-Anbindungssystem B2040	⊐ ⊢ asse	Potentially a LH ₂ Terminal Careford Electrical Grid Interconnection Point: Onshore & Offshore Hamburg Careford Large H ₂ Demand: 5-7,6 TWh/a in 2030

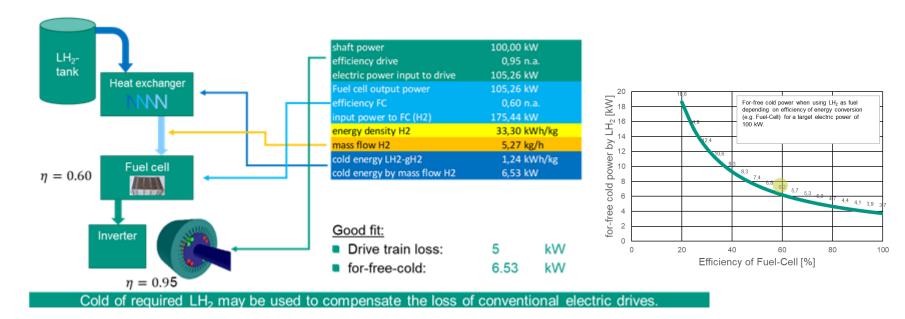
Applications of Liquid hydrogen (LH₂)


- Goal: Local H₂ supply
 Benefits: high volumetric energy density of LH₂, high purity of H₂ from LH₂
 Status: Existing, e.g. in semiconductor industry, H₂ fueling stations (gH₂ and LH₂)

- supply of large-scale gH₂ grids, peak shaving Goal:
- Benefits: volumetric energy density of LH₂, highly dynamic feed-in, no further processing
 Status: not realized on grid-scale

- [¬] Goal: CO₂-free aviation fuel
 - Benefits: high gravimetric and volumetric energy density of LH₂
- [¬] Status: **Research and Development ongoing**

[¬] Goal: CO₂ free fuel of large and heavy vehicles on non-electrified tracks Benefits: high volumetric energy density of LH₂, use of LH₂-cold for cooling Research and Development ongoing / pre-series truck presented [¬] Status:


Local LH₂-based supply chains exist today, many future applications – both stationary and mobile

LH₂ –cooled motor with conventional drive-train

GEFÖRDERT VOM

LH₂ –cooled superconducting motor (KIT)

Courtesy: Siemens AG

Flagship Project TransHyDE

Nick, W., et al. (2012). "Test results from Siemens low-speed, high-torque HTS machine and description of further steps towards commercialisation of HTS machines." <u>Physica C:</u> <u>Superconductivity and its Applications</u> **482**: 105-110.

4 MW

36 ton 120 rpm

<115 W_{max}< 0.003% << 6.2%

8

LH₂-fuel cell energized HTS-motors can be realized w/o additional cooling systems \rightarrow high efficiency!

HTS-Motor:

power:weight:

speed:poles:

• efficiency:

cold loss:

M. J. Wolf - AppLHy! – Transport and Application of Liquid Hydrogen

GEFÖRDERT VOM

LH₂ –cooled superconducting Motor (KIT) Example: high performance compact HTS motor for electric aviation

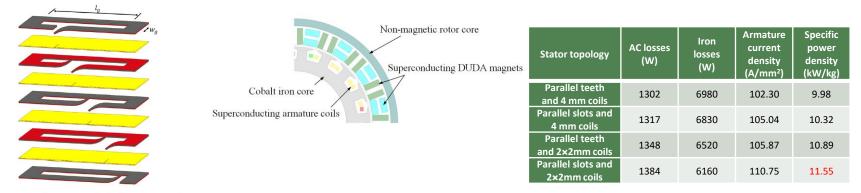


Figure 3. Exploded view of rectangular DUDA with gap of width w_g and length l_g . Red: HTS layers, grey: substrate, yellow: intermediate Kapton layer.

The losses and specific power density of the four stator topologies while achieving an efficiency of 98%.

[Arndt, T., et al. (2021).

"New coil configurations with 2G-HTS and benefits for applications." <u>Superconductor Science and Technology</u> **34**(9).] [R. Wang, Y. Liu, J. Cao, L. Li, X. Liu, H. Xue, T. Arndt "Preliminary design optimization of a fully superconducting motor based on disk-up-down-assembly magnets" accepted manuscript Superconducting Science and Technology - to be published soon]

DUDA is enabling extremely compact high-current density windings of outstanding performance (>11 kW/kg @98%)

M. J. Wolf - AppLHy! - Transport and Application of Liquid Hydrogen

Conclusion

- TransHyDE develops storage and transport infrastructures for green hydrogen and addresses various H₂ transport vectors (gH₂ in pipelines and containers, LH₂, NH₃, LOHC)
- [¬] The TransHyDE project **AppLHy!** focuses on LH₂ and addresses key elements along the LH2 supply chain:
 - $^{\neg}$ H₂ liquefaction
 - Efficient storage systems
 - [¬] LH₂ transportation and transfer
 - [¬] Hybrid Pipelines
 - [¬] Applications and synergies of LH_2 e.g. LH2-cooled superconducting motor of high power density
- [¬] A **whitepaper LH**₂ was prepared from authors of the AppLHy! project, available online:

[¬] Link to the Whitepaper on LH₂