Heat loads measurements at the XFEL cold linac

Measured static and dynamic values at 2K, 5-8K, 40-80K

R. Ramalingam, MKS -DESY European Cryogenics Days, GSI, Darmstadt, 29.03.2023

Outlook

01 Methods of heat load calculation

02 Single cryomodule static and dynamic heat loads at AMTF

• at 5-8K , 40-80K and at 2K

03 Static and dynamic heat loads at the XFEL linac

- at 5-8K , 40-80K
- at 2K

04 5Hz and 10Hz operation

05 Summary

For the single cryomodules and the XFEL linac

• Heat load estimated for three different temperature levels:

Heat load calculation: methodology

External shield: 40-80 K Internal shield: 5-8 K

- Static heat load calculation at 5-8 K and 40-80K
 - Stable flow
 - Calculate heat loads from flow and delta enthalpy
- Static heat load calculation at 2K
 - Stable flow, turn off magnets and RF, subtract heaters
 - For XFEL linac, heat loads from flow and delta enthalpy
 - For single cryomodules in the AMTF hall: warm flowmeters after compressor used, close the JT valve and measure amount of evaporated LHe at constant pressure (isothermal).
- Dynamic heat load calculation at 2K, 5-8 K and 40-80K
 - Same method as static measurement, with RF
 - Subtract average static component from total value

 $\dot{\boldsymbol{Q}}_{s,2K(XFEL)} = \dot{\boldsymbol{m}} \Delta \boldsymbol{h} = \dot{\boldsymbol{m}} (\boldsymbol{h}_{out}(p_{out}, T_{out}) - \boldsymbol{h}_{in}(p_{in}, T_{in}))$ $\dot{\boldsymbol{Q}}_{s,2K(AMTF)} = L\dot{\boldsymbol{m}} \qquad \mathbf{L} = 23.40 \ ^{J}/g @ 2 K, 31 \ mbar$

 $\dot{\boldsymbol{Q}}_{s.5/80K} = \dot{\boldsymbol{m}} \Delta \boldsymbol{h} = \dot{\boldsymbol{m}} (\boldsymbol{h}_{out}(p_{out}, T_{out}) - \boldsymbol{h}_{in}(p_{in}, T_{in}))$

$$\dot{Q}_d = \dot{Q}_{total} - \dot{Q}_s$$

Cavity environment: 2 K

Static and dynamic heat loads (HL) measured in AMTF

40-80 K, 5-8 K and 2 K circuits

- Three test stands available for cold test of single XFEL cryomodules
- Average value of all 103 tested cryomodules (CM)at the three test stands (2014 2015)
- 2K dynamic loads value at average cavity gradient of 23 MV/m

Circuit	Average static HL/ CM HL/ CM	
40-80 K	93 W	n.a.
5-8 K	11 W	n.a.
2 K	5.6 W (Isothermal)	4.2 W

XFEL overview

From the point of view of the heat load calculations

XTL, 9 strings

XFEL static heat loads at 40-80K, 5-8K and 2K

Measurement at the XLVB box

- Measurement performed for the entire linac, including transfer lines, cryogenic boxes and caps
- The values are an average on time periods from 2020 till 2022
- Choice of thermal sensors verified with different methods

Circuit	Average static HL (W)		
40-80 K	9800 W		
5-8 K	800 W		
2 K	587 W		

2K bath (cavities and magnets) isothermal contribution

- Measurement performed with the AMTF method.
- XFEL injector included
- Heat load estimated: 430 W
 - XFEL has 97.5 cryomodules, the static HL/CM is 4.4 W
 one 3.9 GHz CM counts for half a 1.3 GHz CM
 - XFEL Linac 2K isothermal static load: 96 X 4.4 = 423 W

2K return pipe contributions

- 2K return pipe (Gas Return Pipe, DN300) contribution:
 - Instead of outlet T and P, we consider the enthalpy of helium in the saturates state (25.04 J/g)

 $\dot{\boldsymbol{Q}}_{Total} = \dot{\boldsymbol{m}}(\boldsymbol{h}_{sat,V} - \boldsymbol{h}_{in}(p_{in}, T_{in}))$

- The above equation is applicable only if the inlet and outlet enthalpies are measured at same height.
 - Inlet P and T measured 17.6 m above tunnel → contribution of hydrostatic head (173 J/kg) to be included

$$\dot{m} * (25.04 - h_{in} - 0.173) = (24.867 - h_{in}) = \dot{Q}_{Total}$$

• Static HL without 2K return pipe: 515 W

Summary

Components	Heat load (W)		
Total heat load at XLVB	587		
Heat load 2K bath (Isothermal)	423		
Heat load without 2K return	515		
Heat load 2K forward (DN40)	515 – 423 = 92		
Heat load 2K return (DN 300)	587 – 515 = 72		

Summary

Major frequencies are around 0.22 and 0.37 HZ which are too slow to result from thermal acoustic oscillations.

XFEL dynamic heat loads at 5-8K and 40-80K circuits

Summary

Circuit	Dynamic HL at various RF energy (XTL)			
	11.5 GeV	14 GeV	16.5 GeV	
5-8 K	n.a.	140 W	210 W	
40-80 K	1700 W	2300 W	3200 W	

DESY. European Cryogenics Days, GSI, Darmstadt, March 28-29th, 2023.

XFEL dynamic heat loads at 2K

	Dynamic HL at various RF energy (XTL)			
Circuit	11.5 GeV	14 GeV	16.5 GeV	
2 K	200 W	470 W	700 W	

2 K Heat load per cryomodule (CM)

XFEL Linac

Circuit	Average static HL / CM (W)	Average dynamic HL / CM (W)		
		11.5 GeV	14 GeV	16.5 GeV
2 K	4.4*	2.1	4.9	7.3

* Isothermal heat load per cryomodule without 2K forward and 2K return line

- Uncertainty related to heat loads calculation is expected to be around +10 %
 - Measurement uncertainty due to instrumentation inaccuracy and measurement methods
 - e.g. due to leaky valves

Heat loads during repetition rate test: 5Hz and 10Hz

Comparison of heat loads (17.01.2023 – 18.01.2023)

Summary

Static and dynamic heat loads

Static and dynamic heat loads measured at XLVB for entire XFEL Linac (Including TL, FC&EC, SCB)

Circuit	Average	Average dynamic HL (W)		
	static HL (W)	11.5 GeV	14 GeV	16.5 GeV
40-80 K	9800	1700	2300	3200
5-8 K	800	n.a.	140	210
2 K	587	200	470	700

• TL = Transfer Lines (XLTL1-3, 2KF, 2KR)

- FC & EC = Feed and End caps
- SCB = String connection boxes

XFEL Linac Heat load per cryomodule (CM)

Circuit	Average	Average dynamic HL / CM (W)		
	static HL / CM (W)	11.5 GeV	14 GeV	16.5 GeV
40-80 K	102.1	17.7	24	33.3
5-8 K	8.3	n.a	1.45	2.2
2 K	4.4*	2.1	4.9	7.3

* Isothermal heat load per cryomodule without 2K forward and 2K return line

DESY. European Cryogenics Days, GSI, Darmstadt, March 28-29th, 2023.

Uncertainty around +10 %

Thank you

Contact

www.desy.de

DESY. Deutsches Elektronen-Synchrotron Rajinikumar Ramalingam MKS rajinikumar.ramalingam@desy.de A special thank to many colleagues for their material, discussion and advice, in particular:

Y. Bozhko, S. Barbanotti, T. Schnautz, D. Sellmann