





This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 951754.

## FCC CRYOGENICS STATUS, LAYOUT, AND IMPLEMENTATION STUDIES



CERN – Laurent Delprat

on behalf of the Cryogenics Group

laurent.delprat@cern.ch

https://indico.gsi.de/event/15856/

- 1. Current status
- 2. Updated overall layout
- 3. Focus on FCC-ee SRF layout
  - Associated staging
  - Focus on ttbar
  - Sectorisation
- 4. Surface needs
  - Aboveground
- 5. Utilities needs update
  - Electrical
  - CV
- 6. FCC-ee operation modes
- 7. Upcoming steps







## CURRENT STATUS



M. Benedikt

### **Status**



- Narrowing down operating scenarios, CM design concept and heat loads together with SRF team.
- Understanding machine booster operation, its differences with the collider and its impacts on the cryogenics system.
- New baseline PA31-3.0 (25-01-23)
  - LSS reduced from 2160 m to 2032 m.
  - Four scenarios for point L shaft at 0 m, 300 m, 600 m and 1000 m of the IP.
  - Point H changed from asymmetric to symmetric.
  - FCC-ee cryoplants design and staging are being adapted.
- Soon starting a second iteration of exchanges with industrial partners where focus will be put on FCC-ee.





## OVERALL ACCELERATOR LAYOUT FOR FCC

## FCC-ee cryoplants layout – at ttbar stage



→ Technical Point → Sector RF Cryoplant





## FOCUS: FCC CRYO-SRF LAYOUT

## FCC-ee cryogenics for ttbar machine – heat loads

#### All collider cryomodules located at <u>Point H</u>

FCC

- > 60 kW @ 4.5 K to be extracted according to the updated RF heat load estimations\* (15-02-23)
  - > Divided in 65 (400 MHz) cryomodules.
- > 20 kW @ 2 K to be extracted according to the updated RF heat load estimations\* (15-02-23)
  - > Divided in 109 (800 MHz) cryomodules.
- > 2 K heat load is in the current technological limits.
  - > Refinement of all values and iteration with industry is needed.
- Collider point H cryo-RF system is symmetric <u>1940 m in total</u>.
- All booster cryomodules located at <u>Point L</u>
  - > 9 kW @ 2 K to be extracted according to the reduced RF heat load estimations\* (15-02-23)
    - > Divided in 150 (800 MHz) cryomodules.
  - Booster point L cryo-RF system may not be symmetric (4 scenarios) <u>1300 m in total.</u>

\*margin factor of 30% is considered on cryo side due to RF heat load uncertainties and to embed losses from the cryo distribution.





# FOCUS: FCC CRYO-SRF LAYOUT Point H

## Point H

○ FOC



Symmetric point containing the collider SRF section



## FCC-ee cryoplants at point H (ttbar)

○ FCC



| QRL Header<br>& Process values                | Diameter<br>(mm) |
|-----------------------------------------------|------------------|
| <b>A</b> : 1.3 bar , 2.2 K (∆P=25 mbar)       | 72               |
| <b>B</b> : 30 mbar , 2 K ( $\Delta$ P=2 mbar) | 320              |
| <b>C</b> : 3 bar, 4.6 K (∆P=130 mbar)         | 110              |
| <b>D</b> : 1.3 bar, 4.5 K (∆P=70 mbar)        | 185              |
| <b>E</b> : 20 bar, 50 K (∆P=10 mbar)          | 80               |
| <b>F</b> : 18 bar, 75 K (∆P=15 mbar)          | 80               |
| Vacuum jacket (400MHz)                        | 550*             |
| Vacuum jacket (800 MHz)                       | 750*             |
| * . 400 6 1 11 1 6                            |                  |

- \* +100 mm for bellows and flanges
- RF-cryo CM string with baseline scenario fits within the LSS.
  - Alternative scenarios under discussions
- <u>EM separators may not have enough</u> <u>space. To be checked with respective</u> <u>teams. Source: https://indi.to/WpWr7</u>





## FCC-ee cryoplants at point H (ttbar)



## FCC-ee cryoplants at point H: staging

- Staging at point H
  - Increased staging complexity.







13

## FCC-ee CM sectorisation at point H

FOC

- Cryo-RF working group has been set in January 2023 to address the cryomodule design of the cavities.
- Current discussions are focused on the sectorization concept of the 2 K Cryomodules for the 800 MHz bulk Nb cavities.



• Exchange with other teams that addressed the same topic will be started.





# FOCUS: FCC CRYO-SRF LAYOUT Point L

## Point L

#### PL located on the French territory



○ FCC

FOC

#### ERN 17

## FCC-ee cryoplants at point L (ttbar) - Comparative

| OPI Hoodor                                 | Max. Diameter (mm) |            |      |  |
|--------------------------------------------|--------------------|------------|------|--|
|                                            | S1 / S2            | <b>S</b> 3 | S4   |  |
| <b>A/A1</b> : 1.3 bar , 2.2 K (∆P=25 mbar) | 55                 | 65         | 80   |  |
| <b>B/B1</b> : 30 mbar , 2 K (∆P=2 mbar)    | 245                | 290        | 360  |  |
| <b>C</b> : 3 bar, 4.6 K (∆P=130 mbar)      | -                  | -          | -    |  |
| <b>D</b> : 1.3 bar, 4.5 K (∆P=70 mbar)     | -                  | -          | -    |  |
| <b>E</b> : 20 bar, 50 K (∆P=5 mbar)        | 60                 | 80         | 90   |  |
| <b>F</b> : 18 bar, 75 K (∆P=10 mbar)       | 60                 | 80         | 90   |  |
| Vacuum jacket right                        | 550*               | 600*       |      |  |
| Vacuum jacket left                         | 550*               | 500*       | 700* |  |
| QRL Outer envelope                         | 650                | 700        | 800  |  |

- S1 and S2 can be dealt as one when dealing with industrial partners. No difference for the cryo system.
- S3 offers the trickiest staging due to its asymmetry.
- S4 implies the biggest QRL, that is, the hardest integration.
- Site location remains to be discussed with the commune in the coming months.
- Cryo will be ready for any of the outcomes.

\* +100 mm for bellows and flanges

Direct impact on tunnel diameter





## Helium inventory

Assumption: 40 kg LHe per CM

| Point L/S4         | Z       | W       | W H     |         |
|--------------------|---------|---------|---------|---------|
| Cryomodules        | 0.3 ton | 0.6 ton | 1.1 ton | 6 ton   |
| Distribution (QRL) | 1.4 ton | 1.4 ton | 1.4 ton | 1.4 ton |
| Cryoplants         | 0.1 ton | 0.1 ton | 0.2 ton | 0.6 ton |
| Total              | 1.8 ton | 2.1 ton | 2.7 ton | 8 ton   |

| Point H            | Z       | W       | н               | ttbar    |
|--------------------|---------|---------|-----------------|----------|
| Cryomodules        | 2.2 ton | 2.6 ton | 2.6 ton 2.6 ton |          |
| Distribution (QRL) | 4.3 ton | 4.3 ton | 4.3 ton         | 4.3 ton  |
| Cryoplants         | 0.2 ton | 2.1 ton | 2.1 ton         | 4.5 ton  |
| Total              | 6.7 ton | 9 ton   | 9 ton           | 16.3 ton |

### > Total helium inventory for FCC-ee (ttbar) ~ 25 ton

## Alternative cavities cooling scenarios

- A large fraction of the helium inventory is taken by the cryomodules baseline design scenario
- An important reduction could be achieved with the following R&D efforts that are currently ongoing at CERN:
  - 1) Implementation of a dry-cavity cooling technique for the 400 MHz baseline elliptical cavities





Radiofrequency 1.3 GHz prototype cavity with soldered cooling capillaries

#### Cryolab team

- Amount of needed He could be drastically reduced
- Interesting option to improve trapped flux issue
- Purity of He is critical due to the small cooling channel diameter
- Promising solution for standalone small facilities
- Tests bench facility currently under implementation

#### 2) Exchange of the baseline elliptical cavities with the 600 MHz SWELL cavities



- One cavity ≈ 800 kg of Cu.
- Cryogenic cooling by drilled channels.
- CM number reduction by 16 %.
- Same type of cavity for Z, W and H stages.
- Tests coming soon.



## SURFACE NEEDS

#### FOR CIVIL ENGINEERING

### Surface requirements for cryo

• Aboveground surface needs per point:

C FCC

Estimations based on industrial studies for FCC-hh @ CDR baseline and LHC experience.

|         |                                    | Point A & G           |      | Point B & F |       | Point D & J |      | Point H    |       | Point L    |       |
|---------|------------------------------------|-----------------------|------|-------------|-------|-------------|------|------------|-------|------------|-------|
|         |                                    | ee (ttbar)            | hh   | ee (ttbar)  | hh    | ee (ttbar)  | hh   | ee (ttbar) | hh    | ee (ttbar) | hh    |
| 12      | <b>Compressor station building</b> | 430                   | 4300 | х           | 6400  |             |      | 6400       | 6400  | 3200       | 6400  |
| μ       | Cold box building x 400 x 800      |                       |      |             | 800   | 800         | 400  | 800        |       |            |       |
| ш.<br>С | LN2 storage                        | N2 storage 42 42 x 42 |      |             | 42    | 42          | 42   | 42         |       |            |       |
| ač      | GHe storage                        | 400                   | 2000 | x           | 2900  | IN/A        | 1620 | 2900       | 810   | 2900       |       |
| h       | LHe storage                        | x 1080 x 2200         |      |             |       | х           | 2200 | х          | 2200  |            |       |
| S       | Total aboveground                  | 872                   | 7822 | X           | 12342 |             |      | 8862       | 12342 | 4452       | 12342 |



22



## UTILITIES NEEDS



## Revised cooling water needs for FCC-ee

From the CDR to 2023 update

- 2019 CDR:
  - <u>Underground areas</u>: 1.8 MW for point D /// 1.8 MW for point J
     (2 \* 12 kW @ 2 K installed at each point)
  - Surface areas: 27 MW for point D /// 27 MW for point J
    - (2 \* 21.4 kW @ 4.5 K installed at each point)

#### • 2023 update:

- <u>Underground areas @ ttbar</u>:
  - > 0.7 MW for point L (2 \* 6 kW @ 2 K installed)
  - 1.5 MW for point H (2 \* 12 kW @ 2 K installed)
- Surface areas:
  - > 20 MW for point L (2 \* 6 kW @ 2 K installed)
  - 82 MW for point H (2 \* 65 kW @ 4.5 K installed)

Waste heat recovery assessment to be started with CV.



13 MW per cryo-point in the LHC



## Electricity power requirements – Installed power

- > Three scenarios based on warm compressors performance:
  - Conservative: 230 Wel/W or 28.8 % of Carnot efficiency (LHC-like CDR values) the baseline!
  - Intermediate: 210 Wel/W or 31.5 % of Carnot efficiency (with an optimized process) appears not achievable
  - Optimistic: 170 Wel/W or or 39 % of Carnot efficiency (with centrifugal compressors) strong R&D effort needed

|                          |       | PH [MW]            | PL [MW]         | Total [MW]         |
|--------------------------|-------|--------------------|-----------------|--------------------|
|                          | Z     | 1.2 / 1.1 / 0.9    | 0.3 / 0.3 / 0.3 | 1.5 / 1.4 / 1.2    |
| n "nig <u>n"</u><br>node | W     | 13.8 / 12.6 / 10.2 | 0.8 / 0.7 / 0.6 | 14.6 / 13.3 / 11.4 |
|                          | Н     | 13.8 / 12.6 / 10.2 | 1.6 / 1.5 / 1.2 | 15.4 / 14.1 / 12.1 |
| <b>~•</b>                | ttbar | 30 / 27.3 / 22.1   | 7.8 / 7.1 / 5.8 | 37.8 / 34.4 / 27.9 |

-26% of consumption with centrifugal compressors! R&D needed.





## FCC OPERATION MODES

## Operation modes – Typical year

- Phases in a typical year 365 days
  - Shutdown phase 120 days (33%)
    - > The machine is stopped and open for upgrade works, maintenance and repairs.
  - Operation phase 245 days (67%)
    - Hardware and beam commissioning 30 days
      - > All systems are restarted and tested before operation.
    - Physics operation 185 days
      - > Beam is stable and collides for experiments.
    - Technical stops 10 days
      - > Planned stops during operation to perform maintenance and repairs.
    - Machine development 20 days
      - > Planned activities with beam operation to improve beam performance.
- > Availability target 80 % of physics operation
- > The modes will impact the design of the cryoplants and their energy consumption





A total of 14 years of expected life-cycle:

- 4 years in Z stage
- 2 years in W stage
- 3 years in H stage
- 5 years in ttbar stage

## Operation modes – Typical year





## UPCOMING STEPS

## Upcoming steps

- Freeze the geometry of the RF access points
  - Points H & L, relative position of the access shaft wrt the LSS-center
- Freeze the RF layout
  - Number of CMs, heat loads
- Finalize staging proposal after booster filling from scratch mode is clarified
- Define the operation modes of the cryoplants according to the machine modes
- Update the feasibility study, FCC week 23' and Mid-term review
- Investigate the open points (safety aspects, size of the cold box elements)

## THANK YOU FOR YOUR ATTENTION





 $L_{LSS} = 2032 \, m$ 

33

## FCC-ee cryoplants at point L (ttbar) – S1

- S1: Shaft & Service cavern are centered at LSS center.
- The cryomodules are equally distributed on both sides of the shaft in order to reduce the QRL size.
- Straightforward staging with good operability and maintainability option.

| ODI Haadar                              | Diameter (mm) |
|-----------------------------------------|---------------|
|                                         | S1            |
| <b>A</b> : 1.3 bar , 2.2 K (∆P=25 mbar) | 55            |
| <b>B</b> : 30 mbar , 2 K (∆P=2 mbar)    | 245           |
| <b>C</b> : 3 bar, 4.6 K (∆P=130 mbar)   | -             |
| <b>D</b> : 1.3 bar, 4.5 K (∆P=70 mbar)  | -             |
| <b>E</b> : 20 bar, 50 K (∆P=5 mbar)     | 60            |
| <b>F</b> : 18 bar, 75 K (∆P=10 mbar)    | 60            |
| Vacuum jacket right                     | 550*          |
| Vacuum jacket left                      | 550*          |







## FCC-ee cryoplants at point L (ttbar) – S2

 $L_{LSS} = 2032 m$ 



∩ FOC

- S2: Shaft & Service cavern are shifted 300m from the LSS center.
- The cryomodules are **still** equally distributed on both sides of the shaft in order to reduce the QRL size.
- Straightforward staging with good operability and maintainability option.

| ODL Haadar                              | Diameter (mm) |
|-----------------------------------------|---------------|
|                                         | S2            |
| <b>A</b> : 1.3 bar , 2.2 K (∆P=25 mbar) | 55            |
| <b>B</b> : 30 mbar , 2 K (∆P=2 mbar)    | 245           |
| <b>C</b> : 3 bar, 4.6 K (∆P=130 mbar)   | -             |
| <b>D</b> : 1.3 bar, 4.5 K (∆P=70 mbar)  | -             |
| <b>E</b> : 20 bar, 50 K (∆P=5 mbar)     | 60            |
| <b>F</b> : 18 bar, 75 K (∆P=10 mbar)    | 60            |
| Vacuum jacket right                     | 550*          |
| Vacuum jacket left                      | 550*          |



 $L_{LSS} = 2032 m$ 

## FCC-ee cryoplants at point L (ttbar) – S3



○ FCC

#### • S3: Shaft & Service cavern are shifted 600m from the LSS center.

- The cryomodules are **not** equally distributed on both sides of the shaft as LSS end is too close. Distribution is optimised such that QRL size is minimal.
- Staging becomes more challenging as heat loads are not symmetric.

| OBL Header                                 | Diameter (mm) |
|--------------------------------------------|---------------|
|                                            | <b>S</b> 3    |
| <b>A/A1</b> : 1.3 bar , 2.2 K (∆P=25 mbar) | 65/45         |
| <b>B/B1</b> : 30 mbar , 2 K (∆P=2 mbar)    | 290/190       |
| <b>C</b> : 3 bar, 4.6 K (∆P=130 mbar)      | -             |
| <b>D</b> : 1.3 bar, 4.5 K (∆P=70 mbar)     | -             |
| <b>E</b> : 20 bar, 50 K (∆P=5 mbar)        | 80            |
| <b>F</b> : 18 bar, 75 K (∆P=10 mbar)       | 80            |
| Vacuum jacket right                        | 600*          |
| Vacuum jacket left                         | 500*          |

253 m

UCB



 $L_{LSS} = 2032 \, m$ 

## FCC-ee cryoplants at point L (ttbar) – S4



- Cryomodules can not be distributed. One long string is the only possibility.
- Less cryoplants are needed at the cost of operability and maintainability.



**DN800** 

| OPI Haadar                              | Diameter (mm) |
|-----------------------------------------|---------------|
|                                         | S4            |
| <b>A</b> : 1.3 bar , 2.2 K (∆P=25 mbar) | 80            |
| <b>B</b> : 30 mbar , 2 K (∆P=2 mbar)    | 360           |
| <b>C</b> : 3 bar, 4.6 K (∆P=130 mbar)   | -             |
| <b>D</b> : 1.3 bar, 4.5 K (∆P=70 mbar)  | -             |
| <b>E</b> : 20 bar, 50 K (∆P=5 mbar)     | 90            |
| <b>F</b> : 18 bar, 75 K (∆P=10 mbar)    | 90            |
| Vacuum jacket right                     | 700*          |