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Magnetic Density Separation

E. Bakker, P.C. Rem and N. Fraunholcz. “Upgrading mixed polyolefin waste with 
magnetic density separation”. In: Waste Management 29.5 (2009), pp. 1712–1717.
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Why use superconductors in MDS?

Project goal: demonstrator magnet

• 3 NbTi/Cu racetrack coils

• 5 T peak magnetic field

• 𝜆 = 600 mm

• Targeted application: electronic waste

|𝐻| 𝑧 ≈ 𝐻0 exp −
2𝜋

𝜆
𝑧

Higher magnetic field strength (𝐻0) & Larger periodicity (𝜆):

• Enhanced separation resolution (e.g. for similar plastics)

• Deeper usable fluid bed (higher throughput)

• Lower OPEX, more dilute ferrofluid possible

• Wider density range (e.g. electronic waste)
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How do we cool the magnet?
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• NbTi has a critical temperature of 9 K

• But 𝑰𝒐𝒑 decreases steeply with temperature

• Design temperature of 4.5 K

• LHe bath cooling is ideal but…not really!

• Brings magnet further for cryostat surface

• Conduction cooling – Interesting challenge

• Large surface area – Radiation

• Heavy cold mass + coil-fluid attraction – Conduction

• Minimize thermal gradients from magnet to cold-

finger is difficult

• Magnet plus cryostat top plate on a 12∘ angle

• Cryocooler is vertical

OFHC copper
Flexible thermal link

Assembled from 300 
0.2 mm thick foils

Magnet on a 12∘ angle
Cooler vertical for efficiency



Pre-Stress by thermal contraction.
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Pre-Stress guaranteed by differences in thermal contraction.       Allow no release of the coils from the yokes

Cassette: Aluminium (ΔL/L)293→4.2K -0.41%

SS-Yoke (ΔL/L) -0.29%Winding Pack (ΔL/L) -0.35%

Shims: Ti-6Al-4V  (ΔL/L) -0.17%

Stainless
steel yoke

Cold Mass = 540 kg

Max = 190 MPa

Magnet cold and energized



Teamwork: Assembling the system.
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Magnet assembly is pulled into the vacuum container

MLI blankets around thermal shield

Sensor assembly not in this presentation



Teamwork: Assembling the system.
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Magnet assembly is pulled into the vacuum container

MLI blankets around thermal shield

Sensor assembly not in this presentation

2 hand rope winches

Teflon sliding plates



First Cooldown
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Radiation Shield

Cassette

P ≈ 2E-3 mbar @ RT
P < 1E-6 mbar at cold

1.5 W @ 4.2 K

Radiation Shield

As modelled, cool-down time was about 13 days.
But→Magnet temperature = 5.5K 
For a temperature margin of 2.0K → 4.5K is needed
→ 1 K left to operate at design current of 300A

Extensive thermal characterisation reveals a 
thermal short through MLI seams.
Repair was deemed possible but time-consuming 
and likely not necessary.

Cold Mass = 540 kg

SHI RDK-415D2

Cooler at 12∘ = Cooler vertical



Design current of 300A reached without training
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18 May 2022 → 2.15T 
Design current reached

→ 300A 

NO TRAINING QUENCHES



NbTi superconductor properties at operation point

𝑰 𝑰𝒄 ൗ𝑰 𝑰𝒄
𝑩𝒑𝒆𝒂𝒌 𝑻𝒐𝒑 𝑻𝒄𝒔

300 A 752 A 0.4 5.4 T 5.6 K 6.3 K

Design current of 300A reached without training

With more temperature margin, ramping could have been faster.

36 of 16

18 May 2022 → 2.15T 
Design current reached

→ 300A 

NO TRAINING QUENCHES

Ramping in steps to 300A



Magnetic Field Measurements
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Measured Bz (z) exponential decay length 
matches model

Magnetic Field magnitude is within 1.5% of the expected values.
Apparently the magnet is 1.4 mm further from the top plate than
designed. (Note: test current here is 100 A, 300 A is maximum)

|𝐻| 𝑧 ≈ 𝐻0 exp −
2𝜋

𝜆
𝑧



Passive/Active  Coil Protection System 
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The Stored Energy in the coils at 300A =  ½ · L · I² = ½ · 16,4 ·300² = 740 kJ
→F1 racing car (800kg) at a speed of 160 km/h !

Quench ramped-down voltages 
up to 300V are possible.
All current-carrying parts should 
be insulated accordingly.

ACTIVE

PASSIVE
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The Stored Energy in the coils at 300A =  ½ · L · I² = ½ · 16,4 ·300² = 740 kJ
→F1 racing car (800kg) at a speed of 160 km/h !

Quench ramped-down voltages 
up to 300V are possible.
All current-carrying parts should 
be insulated accordingly.

Schottky Diodes
- Anti-parallel
- Redundant 
- Bolted on cassette
- Soldered & bolted ACTIVE

PASSIVE

Brass 
quench heater

SS yoke

Coil, 1.45 m 
long

Energy of one 
coil is used to 
heat the other
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Brass 
quench heater

SS yoke

Coil, 1.45 m 
long

Quench ramped-down voltages 
up to 300V are possible.
All current-carrying parts should 
be insulated accordingly.

‘NORMAL’  OPERATION

ACTIVE

PASSIVE

Passive/Active  Coil Protection System 

Schottky Diodes
- Anti-parallel
- Redundant 
- Bolted on cassette
- Soldered & bolted
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Brass 
quench heater

SS yoke

Coil, 1.45 m 
long

Quench ramped-down voltages 
up to 300V are possible.
All current-carrying parts should 
be insulated accordingly.

TRIP DECAY  after any event

ACTIVE

PASSIVE

Passive/Active  Coil Protection System 

Schottky Diodes
- Anti-parallel
- Redundant 
- Bolted on cassette
- Soldered & bolted 



Effective Protection System
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To test the quench behaviour, two 
small spot-heaters are placed at the 
head of one of the coils.

(Magnet coil has 2232 turns.)
15 Ω each

Manganine wire



Effective Protection System
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70 A

100 A

250 A

Field ramp-down after provoked quenches

To test the quench behaviour, two 
small spot-heaters are placed at the 
head of one of the coils.

(Magnet coil has 2232 turns.)
15 Ω each

Manganine wire

300A still to be tested

Dumping coils’ energy into
neighbour effective to keep 
Tmax acceptable! 



Successful preliminary sorting tests at Umincorp
TU Delft, Umincorp and UT
E-waste: High magnetic fields enable low-cost sorting
- Recover precious metal from electronic components
- Recover of metal from shredded cables

10 cm
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Mass percentage of copper: 1.05%



Successful preliminary sorting tests at Umincorp
TU Delft, Umincorp and UT
E-waste: High magnetic fields enable low-cost sorting
- Recover precious metal from electronic components
- Recover of metal from shredded cables

Plastic: 
High resolution increases end-product purity
Cleaning fine PET from metal, sand and rubber

10 cm
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Follow up
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➢ NbTi was used for this demonstrator 

➢ However, economical study reveals that:
“higher-magnetic field magnet pays itself back”

➢ ReBCO magnet would allow for 
high-density sorting at low cost

Optimal magnet design
CAPEX + OPEX 

Assumptions:
• ρmax = 14 000 kg/m3

• Pure FFcost = 30 €/L

• *FFlost = 4.8 L/ton

*This value regards diluted ferrofluid. Pure FFlost is proportional to its saturation magnetization value

Over 10 years with a 80% running time. 



Conclusions

• First conduction-cooled superconducting MDS 

system assembled successfully

• Cool-down time 13 days, as preicted

• Final temperature 1K > target value, due to a 

thermal short in the MLI

• 300 A current- & 2 T field targets reached 

(within 1.5% due to tolerances) . 

• Successful preliminary waste-sorting tests at the 

Umincorp facility in Rotterdam are ongoing

• Future systems using ReBCO-coils will have the 

lowest operation costs.

49 of 16

First → Demonstration movie with Manganese(II) chloride 
tetrahydrate solution 

(MnCl2·4H2O is paramagnetic and transparent) 
Later → Questions



MDS Demonstration Movie

For this demonstration the Ferrofluid could not be used, because it is black

Manganese(II) chloride tetrahydrate solution MnCl2·4H2O is paramagnetic and transparent.

https://en.wikipedia.org/wiki/Manganese(II)_chloride

https://vimeo.com/724447751/0ee6e758ff
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https://en.wikipedia.org/wiki/Manganese(II)_chloride
https://vimeo.com/724447751/0ee6e758ff
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SHI RDK-415D2



Temperature

Voltage

Coil 1

Coil 2

Coil 2

Coil 1

Coil 3

Coil 3

Current

Hall

Coil 3
Coil 2

spot heater .5A 52 ms

Spot heater power
0.28-0.3 J

Heater power

250 A
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Thermal layout of cold mass
- Single cryocooler conduction-cooled system
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Aluminum radiation shield
+3 multilayer insulation blankets

Al radiation shield
+3 multilayer insulation blankets

5N pure Al heat drain bars 

Al alloy coil casing
+1 multilayer insulation blanket

Al alloy coil casing
+1 multilayer insulation blanket

3 NbTi racetrack coils

Radiation shield
+3 MLI blankets

1.5 W GM cooler @4.2K
(1st stage 60 W @77K)

Thermal link
to coils

Thermal link
to radiation shield

Radiation shield
+3 MLI blankets

Heat budget [W] 1st stage 2nd stage

Radiation 9.8 0.14 

Support structure 3.1 0.26

Current leads 27 0.18

Total 40 0.58



Safety → 5 Gauss line

Safety Floorplan

At 300A the 5 Gauss line has the shape of an ellipse with 3.8m for the long axis and 3.5m for the short axis.
Almost the complete 60% of the available floor area is covered. Warnings and demarcations were placed. 
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Make the coils rectangular.

• Coils // and no gaps
• Winding goes per layer!
• Always ends too small
• Oversize with Glass/Stycast
• Milling needed to get ±0.1 mm
• Special tooling
• METAL B.V.  Nijverdal
• Planned machine maintanance

afterwards (remove all fibres)

5 sides in one clamping

Fill gaps with soaked glass-fibre tape

extreme attention
for the leads!
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End
piece

Quench Heater 
on Kapton

G11 insulation

End piece
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Coil winding and assembly

✓ Wet winding

✓ G11/glass ground insulation

✓ Brass quench heater

✓ End piece for shapingEnd piece glued to coil  



Inner bolts

Outer bolts

Aluminum alloy casing enclosing the coils 

• Two-part thin high-strength aluminum casing
o Keeps coils in place
o Shrink fits around coils upon cool-down
o Coils under compression always
o Ti shims around coils ensures < 0.1 mm gap

• Conduction coil cooling through bottom plate 
casing
o Good thermal contact required

• Top plate casing cool down through the  coils
o Good thermal contact required

• Aluminum casing plates not perfectly flat
o Large number of bolts required
o Contact area and gap with coils requires a 

minimum
57

Coil system  
thermal link

Top plate casing

Bottom plate 
casing



Magnetic Field Testing in spring 2022
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18 May 2022 → 2.15T 
Operation Current reached

→ 300A 

NO TRAINING QUENCHES

First field of 0.2T on 17 February 2022.
Field is low and still safe, time to play  ☺

19” Racks with:
• 400 A power supply
• Power Resistor&Diodes
• Monitoring Devices
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