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SME: An Effective Description of Lorentz Violation

m

Particle/wave with A ~ D “sees”

complicated molecular physics

Particle/wave with

A~lp =/ ~107%m

“sees” strings? loops?  spacetime
foam?

Particle/wave with A > D “sees” an
isotropic medium

Particle/wave with A > Ip “sees’ a
background field
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SME: An Effective Field Theory

e Symmetries: SM gauge group SU(3)c x SU(2), x U(1)y
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e Expansion coefficient: MLP, where v ~ 246 GeV Higgs vacuum

expectation value, Mp = \/h—GC ~ 10 GeV Planck mass
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Standard-Model Extension (SME): The Lepton Sector*

e Strength of Lorentz violation (“Wilson coefficient™)
<> vevs of tensor-valued background fields: “controlling coefficients”

*Don Colladay, Alan Kostelecky, arXiv:9809521
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Standard-Model Extension (SME): The Lepton Sector*

e Strength of Lorentz violation (“Wilson coefficient™)
<> vevs of tensor-valued background fields: “controlling coefficients’

e Background fields contracted with SM-fields, e.g.

1- . 1— .
‘Cﬁe';)/lton = ELA/aLA + ERAIaRA + h.c.

1 T Py Y ~
Lipordd = — 5 (LA(aL)ZBWHLB + RA(aR)‘/iBwRB) +h.c.

- 1 7 ~ vV - ey A vV -
Eﬁﬁl,fve” = §<LA(CL)ZBI(9V’YMLB + RA(CR)ZB@V’YMRB) + h.c

La, Lg: SM lepton doublets of flavour A, B

(3)4p, (€)ag: vectorial, tensorial controlling coefficients connecting the
flavours A and B
*Don Colladay, Alan Kostelecky, arXiv:9809521
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Observer Lorentz transformation

: ” g

X

The observer (the penguin) redefines his x- and y-axes.
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Active Lorentz transformation

X

X

All coordinates are redefined, but the x- and y-axes of the observer
(the penguin) are unchanged.
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Particle Lorentz Transformation

i,
i

Orientation of the laboratory changes wrt. the background field.
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Particle Lorentz Transformation

i
=

Orientation of the laboratory changes wrt. the background field.

X

The penguin measures the effect of the background field on the lab.
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Isotropic Lorentz Violation

A medium defines a Lorentz-violating background:

Particle “sees” crazy stuff.

Particle “sees” an isotropic medium,
background field.
= modified dispersion relation*

E? —m? + p?

3

o 2
= (14 &)2E? =m? + (1 — 5) p?

*arXiv:1702.03171
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Electron/Muon Anomalous Magnetic Moments

Electron Anomalous Magnetic Moment*

Aa,[Cs] = a®P — a>M[Cs] = —0.88(28)(23)[36] x 10712,

Aa [Rb] = a®® — aM[Rb] = +0.48(28)(9)[30] x 10712,

a from Cs/Rb interferometry**, uncertainties on a®P, «, total uncertainty
update: arXiv:2209.13084
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QED Vertex Function

i
M(p1, P2 ) = Fu(a* )" + Fa(a”) 5~ qy
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QED Vertex Function

i
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QED Vertex Function

i
M(pr. P2, @) = FL(@)" + Fa( ) 50"

At tree-level, in the SM,

F1(0) =1, F2(0) =0

&y —
2

2
= ay = = F(0)=0

At tree-level, in presence of Lorentz-violating
coefficient c*¥,

Py
F1(0) =1, F,(0) = 777

2
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a, in Presence of Lorentz-Violation

Previous studies:

Spin-nondegenerate coefficients b,d, H, g
= Modified spin precession
= Time-dependent effects

Bluhm et al., Chen & Kunstatter, Muon g-2 collaboration, Kostelecky &
Mewes, Gomes et al., Lin et al.
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Previous studies:

Spin-nondegenerate coefficients b,d, H, g
= Modified spin precession
= Time-dependent effects

Bluhm et al., Chen & Kunstatter, Muon g-2 collaboration, Kostelecky &
Mewes, Gomes et al., Lin et al.

Our article: Spin-degenerate coefficients c, k
= Modified QED vertex

= Modified propagation

arXiv: 2208.11420 [hep-ph]
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______________________________________
Modified QED

L= S0l + )y — ml b+ he

1
B 1(77#977110 + (kF)WQU)FWFgU :

D, =0, +igA,, q = —e, e > 0 for electrons.

*A. Kostelecky, hep-th/0312310
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B 1(77#977110 + (kF)WQU)FWFgU :

D, =0, +igA,, q = —e, e > 0 for electrons.

™ and (kf)uweo are real. The antisymmetric part of c#” can, to
linear order in ¢, be removed by a field redefinition*

B ) = (14 40 ) 000, o= Sl

kF satisfies (kF)/J,I/H)\ - (kF)Ii)\p,l/ = _(kF)Vum\ = _(kF)uV/\f-c .
Define the symmetric traceless 4 x 4 matrix k®* = (kF)V‘”/B :

*A. Kostelecky, hep-th/0312310
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a, in Presence of ¢,

Modified QED Vertex:
1— ..
L= §¢ [I(’YM + CVM’YV)D# - m] ¥+ h.c.

D, = 0,+iqA,, g = —e, e > 0 for electrons.

Modified Dirac Equation:

(p+ " yupy — mu(p) = 0

Modified Gordon identity:
pi pr 4 Eol p: _if HA 2>
a(pr)y"u(pi) = 5 —u(pr) | (0" + )Py
—io (1 + ) an | u(py)
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ay in Presence of ¢, = effective metric

Modified QED Vertex:
1— ..
L= §¢ li(n™" + ")y, Dy — ml ¢ + h.c.

D, = 0,+iqA,, g = —e, e > 0 for electrons.

Modified Dirac Equation:

(1" + ") yupy — m)u(p) = 0

q
Modified Gordon identity:
_ _ 1 _ . .
" U dlpen"ulpi) = 5 T(pr) | (0" + )Py

— i (11 + ) an | u(py)
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ay in Presence of ¢,

SM contribution:

iMO = —5®ieyuN A, (q)

SS'

ie (s 1 v s
= —%u( ) <P”Au(q) _ EUW,:AL (q)> us)

= (MO 5 o), Fr(q) = —° BS*
dm m

Lorentz-violating contribution:

1 /
5./\/11(2)55, = —%H(s) [ — §(CW\U)‘V — c0," Fu(q) +2¢" P AL(q) | ul)
= 5/\/152)55 D ﬁﬂ(s)(c‘”‘a/\ — o ,MuIF,, = £ (c!t + ¢?2)BS?
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ay.y in Presence of ¢/ and k"

At tree-level,

) p 11 P 22
_&y < — | 2 _ o
ayy = > (2 c) + (2 c) .

*arXiv:hep-th /0609030
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ay.y in Presence of ¢/ and k"

At tree-level,

5 p 11 P 22
_&y T _ [ K 2
ayy = > (2 c) + (2 c) .

= Absorb k in ¢ by change of coordinates*

1~
xt s xt = xt — ZkHxY
2 14

1.
ct M = M — Z R

*arXiv:hep-th /0609030
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ay.y in Presence of ¢/ and k"

At tree-level,

5 p 11 P 22
_&y T _ [ K 2
ayy = > (2 c) + (2 c) .

= Absorb k in ¢ by change of coordinates*

1~
xt s xt = xt — ZkHxY
2 14

1~
ct =M = M — Ek‘“’

Isotropic Lorentz violation: ¢/ = ¢& diag (1, % % %)W

*arXiv:hep-th /0609030
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Isotropic Lorentz Violation: Modified Kinematics*

11 1\*
c””zédiag(l,,,)

Modified dispersion relation

o\ 2
14 EPE2=m?+ (1S p?
( W P

3

i Vacuum Cerenkov radiation threshold energy:
1 /3 m

th _ + /9
v T o\ o /¢

Photon decay threshold energy:

3 m
Eth:\/7 )
8l 2\/E

*arXiv:1702.03171
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Can ¢, Explain the Tension in a,?*

106F T [ ] excluded by LHAASO
- )
10° 8 H Aay, 1o
% [ Aay, 20
T
“ P — BN
min(E") at IceCube
10°F
|
— min(E{") at FCC-hh

0 2x 1077 4x 07 — min(E}") at LHC

Aay,

*A. Crivellin et al., arXiv:2208.11420
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Can ¢, Explain the Tension in a,?*

1x10'F [ ] excluded by LHAASO
5% 10° - - EMe)
gj B Acac[Rb], 1o
= 1% 10°F B Aeclrel, 20
5x 107 | — O
— min(E!™) at FCC-hh
1 — min(EM) at LHC
0 5x107%  1x 10712
Aa,

*A. Crivellin et al., arXiv:2208.11420
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Conclusions

e Search for Lorentz violation < search for physics beyond
QFT+GR
o Preferred direction in spacetime
o lIsotropic Lorentz violation

* Lorentz-violating Standard Model Extension (SME):
Effective field theory framework for the study of Lorentz violation
+ Description at low energies (where we and our experiments are)

+ Theoretically consistent framework based on QFT, SM
+ Agnostic approach (bottom-up, data-driven)
+ Allows for comparison of data from different experiments

¢ Tensions between theory and experiment in a,, a.:
Can these be explained by c#¥?
+ c* enters via modified QED vertex, modified Gordon identity
- Constraints from vacuum Cerenkov radiation & photon decay
= Nope, but it was worth checking.
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ay in Presence of k"

Field equations for photons modified by kg *:
M (p)As(p) =0, M*(p) =n""p>—p®p’ —2(ke)**psp, .

Insert l~</"”, linearise, def. g+ = (77“” + %/;/“’) g, Ab = (77“” + %fd"”) A,

= | oM > = w (kero,r — ko, 2uOF,, = — = (k1 + 22)BS?

*D. Colladay, A. Kostelecky, arXiv:hep-ph/9809521
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