a_ψ in Presence of $c^{\mu u}$

Fiona Kirk in collaboration with Andreas Crivellin and Marco Schreck

EMMI Workshop, Laboratoire Kastler-Brossel Wednesday 26th October 2022

The Lorentz-Violating Standard Model Extension (SME)

 a_ψ in Presence of $c^{\mu
u}$

The Lorentz-Violating Standard Model Extension (SME)

 a_ψ in Presence of $c^{\mu
u}$

Lorentz Violation and the SME*

*Don Colladay, Alan Kostelecký, arXiv:9703464,9809521

Lorentz Violation and the SME*

*Don Colladay, Alan Kostelecký, arXiv:9703464,9809521

Lorentz Violation and the SME*

$ar \times iv > hep-ph > arXiv:0801.0287$

High Energy Physics - Phenomenology

(Submitted on 1 Jan 2008 (v1), last revised 23 Jan 2022 (this version, v15)]

Data Tables for Lorentz and CPT Violation

Alan Kostelecky, Neil Russell

This work tabulates measured and derived values of coefficients for Lorent definitions and properties are also compiled.

Comments: 130 pages, 2022 edition Statistics: High Energy Physics - Phenomenology (hep-ph). Astrophysics (as for arXiv:2001.0037 (hep-ph) for this version) (or arXiv:2001.0037 (hep-ph) for this version) memory biology (hep-ph) for this version) automateriese: RevMod Type, 83: 11 (2011) Bettested 201: Hep-philos and you (hep-philos for the set of the Bettested 201: Hep-philos and you (hep-philos for the set of the Bettested 201: Hep-philos and you (hep-philos for the set of the Bettested 201: Hep-philos and you (hep-philos for the set of the Bettested 201: Hep-philos and you (hep-philos for the set of the Bettested 201: Hep-philos and you (hep-philos for the set of the set of the Bettested 201: Hep-philos and you (hep-philos for the set of the set of

Submission history

```
From: Alan Kostelecky [view email]
[v1] Tue, 1 Jan 2008 09:41:36 UTC (10 KB)
[v2] Thu, 22 Jan 2009 18:29:13 UTC (78 KB)
[v3] Tue, 5 Jan 2010 02:00:01 UTC (82 KB)
[v4] Thu. 6 Jan 2011 21:28:27 UTC (74 KB)
[v5] Fri, 13 Jan 2012 11:38:36 UTC (85 KB)
[v6] Thu, 24 Jan 2013 01:34:25 UTC (90 KB)
[v7] Thu, 23 Jan 2014 00:07:28 UTC (98 KB)
[v8] Mon, 19 Jan 2015 23:41:30 UTC (101 KB)
[v9] Fri. 26 Feb 2016 20:07:41 UTC (105 KB)
[v10] Fri. 13 Jan 2017 16:04:18 UTC (113 KB)
[v11] Mon. 8 Jan 2018 20:45:38 UTC (118 KB)
[v12] Thu, 3 Jan 2019 17:03:59 UTC (123 KB)
[v13] Fri, 3 Jan 2020 19:20:27 UTC (126 KB)
[v14] Sat. 2 Jan 2021 02:35:44 UTC (130 KB)
[v15] Sun. 23 Jan 2022 20:31:11 UTC (136 KB)
```

*Don Colladay, Alan Kostelecký, arXiv:9703464,9809521

SME: An Effective Description of Lorentz Violation

Particle/wave with $\lambda \sim D$ "sees" complicated molecular physics

Particle/wave with $\lambda \sim I_P = \sqrt{\frac{\hbar G}{c^3}} \sim 10^{-35} \text{ m}$ "sees" strings? loops? spacetime foam?

Particle/wave with $\lambda \gg {\it D}$ "sees" an isotropic medium

Particle/wave with $\lambda \gg \textit{I}_{\textit{P}}$ "sees" a background field

SME: An Effective Field Theory

• Symmetries: SM gauge group $SU(3)_c \times SU(2)_L \times U(1)_Y$

SME: An Effective Field Theory

- Symmetries: SM gauge group $SU(3)_c \times SU(2)_L \times U(1)_Y$
- Field content: Standard Model field content

SME: An Effective Field Theory

- Symmetries: SM gauge group $SU(3)_c \times SU(2)_L \times U(1)_Y$
- Field content: Standard Model field content

• Expansion coefficient: $\frac{v}{M_P}$, where $v \sim 246$ GeV Higgs vacuum expectation value, $M_P = \sqrt{\frac{\hbar c}{G}} \sim 10^{19}$ GeV Planck mass

Standard-Model Extension (SME): The Lepton Sector*

Strength of Lorentz violation ("Wilson coefficient")
 \epsilon vevs of tensor-valued background fields: "controlling coefficients"

^{*}Don Colladay, Alan Kostelecký, arXiv:9809521

Standard-Model Extension (SME): The Lepton Sector*

- Strength of Lorentz violation ("Wilson coefficient")
 ⇔ vevs of tensor-valued background fields: "controlling coefficients"
- Background fields contracted with SM-fields, e.g.

$$\begin{split} \mathcal{L}_{\text{lepton}}^{\text{SM}} &= \frac{1}{2} \overline{L}_{A} i \partial \!\!\!/ L_{A} + \frac{1}{2} \overline{R}_{A} i \partial \!\!\!/ R_{A} + \text{h.c.} \\ \mathcal{L}_{\text{lepton}}^{\text{CPT-odd}} &= -\frac{1}{2} \Big(\overline{L}_{A} (\hat{a}_{L})_{AB}^{\mu} \gamma_{\mu} L_{B} + \overline{R}_{A} (\hat{a}_{R})_{AB}^{\mu} \gamma_{\mu} R_{B} \Big) + \text{h.c.} \\ \mathcal{L}_{\text{lepton}}^{\text{CPT-even}} &= \frac{1}{2} \Big(\overline{L}_{A} (\hat{c}_{L})_{AB}^{\mu\nu} i \partial_{\nu} \gamma_{\mu} L_{B} + \overline{R}_{A} (\hat{c}_{R})_{AB}^{\mu\nu} i \partial_{\nu} \gamma_{\mu} R_{B} \Big) + \text{h.c.} \end{split}$$

 L_A , L_B : SM lepton doublets of flavour A, B

 $(\hat{a})^{\mu}_{AB}, (\hat{c})^{\mu\nu}_{AB}$: vectorial, tensorial controlling coefficients connecting the flavours A and B

*Don Colladay, Alan Kostelecký, arXiv:9809521

Observer Lorentz transformation

The observer (the penguin) redefines his x- and y-axes.

Observer Lorentz transformation

The observer (the penguin) redefines his x- and y-axes.

This does not change the physics.

Active Lorentz transformation

All coordinates are redefined, but the x- and y-axes of the observer (the penguin) are unchanged.

Active Lorentz transformation

All coordinates are redefined, but the x- and y-axes of the observer (the penguin) are unchanged.

This does not change the physics.

Particle Lorentz Transformation

Orientation of the laboratory changes wrt. the background field.

Particle Lorentz Transformation

Orientation of the laboratory changes wrt. the background field.

The penguin measures the effect of the background field on the lab.

Isotropic Lorentz Violation

A medium defines a Lorentz-violating background:

Particle "sees" crazy stuff.

Particle "sees" an isotropic medium, background field.

 \Rightarrow modified dispersion relation*

$$E^2 = m^2 + \mathbf{p}^2$$
$$\Rightarrow (1 + \mathring{\mathbf{c}})^2 E^2 = m^2 + \left(1 - \frac{\mathring{\mathbf{c}}}{3}\right)^2 \mathbf{p}^2$$

The Lorentz-Violating Standard Model Extension (SME)

 a_ψ in Presence of $c^{\mu
u}$

Electron/Muon Anomalous Magnetic Moments

Electron Anomalous Magnetic Moment*

$$\Delta a_{
m e}[{
m Cs}]\equiv a_{
m e}^{
m exp}-a_{
m e}^{
m SM}[{
m Cs}]=-0.88(28)(23)[36] imes 10^{-12}$$
 ,

 $\Delta a_{
m e}[{
m Rb}]\equiv a_{
m e}^{
m exp}-a_{
m e}^{
m SM}[{
m Rb}]=+0.48(28)(9)[30] imes10^{-12}$,

 α from Cs/Rb interferometry**, uncertainties on $a_{\rm e}^{\rm exp}$, α , total uncertainty update: arXiv:2209.13084

*Hanneke et al., ** Parker et al. / Morel et al. *** Exp. av., Th. Init. WP $_{9\ of\ 19}$

Electron/Muon Anomalous Magnetic Moments

Electron Anomalous Magnetic Moment*

$$\Delta a_{
m e}[{
m Cs}]\equiv a_{
m e}^{
m exp}-a_{
m e}^{
m SM}[{
m Cs}]=-0.88(28)(23)[36] imes 10^{-12}$$
 ,

 $\Delta a_{
m e}[{
m Rb}]\equiv a_{
m e}^{
m exp}-a_{
m e}^{
m SM}[{
m Rb}]=+0.48(28)(9)[30] imes10^{-12}$,

 α from Cs/Rb interferometry**, uncertainties on $a_{\rm e}^{\rm exp}$, α , total uncertainty update: arXiv:2209.13084

Muon Anomalous Magnetic Moment***

$$\Delta a_{\mu} \equiv a_{\mu}^{\mathsf{exp}} - a_{\mu}^{\mathsf{SM}} = 2.51(59) imes 10^{-9}$$

*Hanneke et al., ** Parker et al. / Morel et al. *** Exp. av., Th. Init. WP $_{9\ of\ 19}$

Electron/Muon Anomalous Magnetic Moments

Electron Anomalous Magnetic Moment*

$$\Delta a_{
m e}[{
m Cs}]\equiv a_{
m e}^{
m exp}-a_{
m e}^{
m SM}[{
m Cs}]=-0.88(28)(23)[36] imes 10^{-12}$$
 ,

 $\Delta a_{
m e}[{
m Rb}]\equiv a_{
m e}^{
m exp}-a_{
m e}^{
m SM}[{
m Rb}]=+0.48(28)(9)[30] imes10^{-12}$,

 α from Cs/Rb interferometry**, uncertainties on $a_{\rm e}^{\rm exp}$, α , total uncertainty update: arXiv:2209.13084

Muon Anomalous Magnetic Moment***

$$\Delta a_{\mu} \equiv a_{\mu}^{\mathsf{exp}} - a_{\mu}^{\mathsf{SM}} = 2.51(59) imes 10^{-9}$$
 .

*Hanneke et al., ** Parker et al. / Morel et al. *** Exp. av., Th. Init. WP $_{9\ of\ 19}$

QED Vertex Function

$$\Gamma^{\mu}(p_1, p_2, q) = F_1(q^2)\gamma^{\mu} + F_2(q^2)rac{i}{2m}\sigma^{\mu
u}q_{
u}$$

QED Vertex Function

$$\Gamma^{\mu}(p_1, p_2, q) = F_1(q^2)\gamma^{\mu} + F_2(q^2)rac{i}{2m}\sigma^{\mu
u}q_{
u}$$

At tree-level, in the SM,

$$F_1(0) = 1,$$
 $F_2(0) = 0$
 $\Rightarrow a_{\psi} = \frac{g_{\psi} - 2}{2} = F_2(0) = 0$

QED Vertex Function

$$\Gamma^{\mu}(p_1, p_2, q) = F_1(q^2)\gamma^{\mu} + F_2(q^2)rac{\prime}{2m}\sigma^{\mu
u}q_{
u}$$

At tree-level, in the SM,

$$F_1(0) = 1,$$
 $F_2(0) = 0$
 $\Rightarrow a_{\psi} = \frac{g_{\psi} - 2}{2} = F_2(0) = 0$

At tree-level, in presence of Lorentz-violating coefficient $c^{\mu\nu}$,

$$F_1(0) = 1, \qquad F_2(0) = ???$$

 $\Rightarrow a_{\psi} = \frac{g_{\psi} - 2}{2} = F_2(0) = ???$

a_{ψ} in Presence of Lorentz-Violation

Previous studies:

Spin-nondegenerate coefficients b, d, H, g

- ⇒ Modified spin precession
- \Rightarrow Time-dependent effects

Bluhm et al., Chen & Kunstatter, Muon g-2 collaboration, Kostelecký & Mewes, Gomes et al., Lin et al.

a_{ψ} in Presence of Lorentz-Violation

Previous studies:

Spin-nondegenerate coefficients b, d, H, g

- \Rightarrow Modified spin precession
- \Rightarrow Time-dependent effects

Bluhm et al., Chen & Kunstatter, Muon g-2 collaboration, Kostelecký & Mewes, Gomes et al., Lin et al.

Our article: Spin-degenerate coefficients c, \tilde{k}

- \Rightarrow Modified QED vertex
- \Rightarrow Modified propagation

arXiv: 2208.11420 [hep-ph]

Modified QED

$$\mathcal{L} = rac{1}{2} \overline{\psi} \left[\mathsf{i}(\gamma^{\mu} + c^{
u\mu}\gamma_{
u}) D_{\mu} - m
ight] \psi + \mathsf{h.c.} \ - rac{1}{4} (\eta_{\mu\varrho}\eta_{
u\sigma} + (k_{F})_{\mu
u\varrho\sigma}) F^{\mu
u} F^{arrho\sigma} \,.$$

 $D_{\mu}=\partial_{\mu}+\mathrm{i} q A_{\mu}$, q=-e, e>0 for electrons.

^{*}A. Kostelecký, hep-th/0312310

Modified QED

$$egin{aligned} \mathcal{L} &= rac{1}{2} \overline{\psi} \left[\mathsf{i} (\gamma^\mu + oldsymbol{c}^{
u\mu} \gamma_
u) D_\mu - oldsymbol{m}
ight] \psi + \mathsf{h.c.} \ &- rac{1}{4} (\eta_{\mu arrho} \eta_{
u\sigma} + (oldsymbol{k_F})_{\mu
u arrho \sigma}) F^{\mu
u} F^{arrho \sigma} \,. \end{aligned}$$

 $D_{\mu}=\partial_{\mu}+{
m i} q A_{\mu}$, q=-e, e>0 for electrons.

 $c^{\mu\nu}$ and $(k_F)_{\mu\nu\rho\sigma}$ are real. The antisymmetric part of $c^{\mu\nu}$ can, to linear order in c, be removed by a field redefinition*

$$\psi(x)\mapsto\psi'(x)=\left(1+rac{\mathsf{i}}{4}c^{\mu
u}\sigma_{\mu
u}
ight)\psi(x)\,,\qquad\sigma^{\mu
u}\equivrac{\mathsf{i}}{2}[\gamma^{\mu},\gamma^{
u}]\,.$$

*A. Kostelecký, hep-th/0312310

Modified QED

$$egin{aligned} \mathcal{L} &= rac{1}{2} \overline{\psi} \left[\mathsf{i} (\gamma^\mu + oldsymbol{c}^{
u\mu} \gamma_
u) D_\mu - oldsymbol{m}
ight] \psi + \mathsf{h.c.} \ &- rac{1}{4} (\eta_{\mu arrho} \eta_{
u\sigma} + (oldsymbol{k_F})_{\mu
u arrho \sigma}) F^{\mu
u} F^{arrho \sigma} \,. \end{aligned}$$

 $D_{\mu}=\partial_{\mu}+{
m i} q A_{\mu}$, q=-e, e>0 for electrons.

 $c^{\mu\nu}$ and $(k_F)_{\mu\nu\rho\sigma}$ are real. The antisymmetric part of $c^{\mu\nu}$ can, to linear order in c, be removed by a field redefinition*

$$\psi(x)\mapsto\psi'(x)=\left(1+rac{\mathsf{i}}{4}c^{\mu
u}\sigma_{\mu
u}
ight)\psi(x)\,,\qquad\sigma^{\mu
u}\equivrac{\mathsf{i}}{2}[\gamma^{\mu},\gamma^{
u}]\,.$$

 k_F satisfies $(k_F)_{\mu\nu\kappa\lambda} = (k_F)_{\kappa\lambda\mu\nu} = -(k_F)_{\nu\mu\kappa\lambda} = -(k_F)_{\mu\nu\lambda\kappa}$. Define the symmetric traceless 4×4 matrix $\tilde{k}^{\alpha\beta} \equiv (k_F)^{\alpha\gamma\beta}_{\gamma}$.

^{*}A. Kostelecký, hep-th/0312310

 a_{ψ} in Presence of $c_{\mu\nu}$

 p_f

Modified Dirac Equation:

$$(p + c^{\mu\nu}\gamma_{\mu}p_{\nu} - m)u(p) = 0$$

Modified Gordon identity:

 $\overline{u}(p_f)\gamma^{\mu}u(p_i) = \frac{1}{2m}\overline{u}(p_f)\Big[(\eta^{\mu\lambda} + c^{\mu\lambda})P_{\lambda} \\ -i\sigma^{\mu}_{\kappa}(\eta^{\kappa\lambda} + c^{\kappa\lambda})q_{\lambda}\Big]u(p_i)$

 p_i

a_{ψ} in Presence of $c_{\mu\nu} \Rightarrow$ effective metric

Modified Dirac Equation:

 p_f

 $((\eta^{\nu\mu}+c^{\nu\mu})\gamma_{\mu}p_{\nu}-m)u(p)=0$

Modified Gordon identity:

 $\overline{u}(p_f)\gamma^{\mu}u(p_i) = \frac{1}{2m}\overline{u}(p_f)\Big[(\eta^{\mu\lambda} + c^{\mu\lambda})P_{\lambda} \\ -i\sigma^{\mu}_{\kappa}(\eta^{\kappa\lambda} + c^{\kappa\lambda})q_{\lambda}\Big]u(p_i)$

 p_i

 a_{ψ} in Presence of $c_{\mu\nu}$

SM contribution:

$$i\mathcal{M}_{ss'}^{(0)} = -\overline{u}^{(s)}ie\gamma^{\mu}u^{(s')}A_{\mu}(q)$$
$$= -\frac{ie}{2m}\overline{u}^{(s)}\left(P^{\mu}A_{\mu}(q) - \frac{1}{2}\sigma_{\mu\nu}F^{\mu\nu}(q)\right)u^{(s')}$$

$$\Rightarrow \mathcal{M}_{ss}^{(0)} \supset \frac{e}{4m} \overline{u}^{(s)} \sigma_{\mu\nu} u^{(s)} F^{\mu\nu}(q) = -\frac{e}{m} BS^{z}$$

Lorentz-violating contribution:

$$\delta \mathcal{M}_{\psi,ss'}^{(0)} = -\frac{e}{2m} \overline{u}^{(s)} \left[-\frac{1}{2} (c^{\mu\lambda} \sigma_{\lambda}^{\ \nu} - c^{\nu\lambda} \sigma_{\lambda}^{\ \mu}) F_{\mu\nu}(q) + 2c^{\mu\nu} P_{\nu} A_{\mu}(q) \right] u^{(s')}$$

$$\Rightarrow \left| \delta \mathcal{M}_{\psi,ss}^{(0)} \supset \frac{e}{4m} \overline{u}^{(s)} (c^{\mu\lambda} \sigma_{\lambda}^{\ \nu} - c^{\nu\lambda} \sigma_{\lambda}^{\ \mu}) u^{(s)} F_{\mu\nu} = \frac{e}{m} (c^{11} + c^{22}) BS^{z} \right|$$

 $a_{\psi,\gamma}$ in Presence of $c^{\mu
u}$ and $ilde{k}^{\mu
u}$

At tree-level,

$$a_{\psi,\gamma} = \frac{g_{\psi,\gamma} - 2}{2} = \left(\frac{\tilde{k}}{2} - c\right)^{11} + \left(\frac{\tilde{k}}{2} - c\right)^{22}$$

.

*arXiv:hep-th/0609030

 $a_{\psi,\gamma}$ in Presence of $c^{\mu
u}$ and $ilde{k}^{\mu
u}$

At tree-level,

$$a_{\psi,\gamma} = \frac{g_{\psi,\gamma} - 2}{2} = \left(\frac{\tilde{k}}{2} - c\right)^{11} + \left(\frac{\tilde{k}}{2} - c\right)^{22}$$

 \Rightarrow Absorb \tilde{k} in c by change of coordinates^{*}

$$\begin{aligned} x^{\mu} \rightarrow x'^{\mu} &= x^{\mu} - \frac{1}{2} \tilde{k}^{\mu}_{\nu} x^{\nu} \\ c^{\mu\nu} \rightarrow c'^{\mu\nu} &= c^{\mu\nu} - \frac{1}{2} \tilde{k}^{\mu\nu} \end{aligned}$$

*arXiv:hep-th/0609030

 $a_{\psi,\gamma}$ in Presence of $c^{\mu
u}$ and $ilde{k}^{\mu
u}$

At tree-level,

$$a_{\psi,\gamma} = \frac{g_{\psi,\gamma}-2}{2} = \left(\frac{\tilde{k}}{2}-c\right)^{11} + \left(\frac{\tilde{k}}{2}-c\right)^{22}.$$

 \Rightarrow Absorb \tilde{k} in *c* by change of coordinates^{*}

$$\begin{aligned} x^{\mu} \rightarrow & x'^{\mu} = x^{\mu} - \frac{1}{2} \tilde{k}^{\mu}_{\nu} x^{\nu} \\ c^{\mu\nu} \rightarrow & c'^{\mu\nu} = c^{\mu\nu} - \frac{1}{2} \tilde{k}^{\mu\nu} \end{aligned}$$

Isotropic Lorentz violation: $c^{\mu\nu} = \mathring{c} \operatorname{diag} \left(1, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)^{\mu\nu}$

$$\Rightarrow a_{\psi} = -\frac{2}{3}\ddot{c}$$

*arXiv:hep-th/0609030

Isotropic Lorentz Violation: Modified Kinematics*

$$c^{\mu
u} = \mathring{c} \operatorname{diag}\left(1, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)^{\mu u}$$

Modified dispersion relation

$$(1+\mathring{c})^2 E_{\psi}^2 = m^2 + \left(1-\frac{\mathring{c}}{3}\right)^2 \mathbf{p}^2$$

Vacuum Čerenkov radiation threshold energy:

$$E_{\psi}^{\mathsf{th}} = rac{1}{2}\sqrt{rac{3}{2}}rac{m}{\sqrt{-\mathring{c}}}$$

Photon decay threshold energy:

$$E_{\gamma}^{ ext{th}} = \sqrt{rac{3}{2}} rac{m}{\sqrt{\mathring{c}}}$$
 .

*A. Crivellin et al., arXiv:2208.11420 17 of 19

*A. Crivellin et al., arXiv:2208.11420 18 of 19

The Lorentz-Violating Standard Model Extension (SME)

 a_{ψ} in Presence of $c^{\mu
u}$

- Search for Lorentz violation \Leftrightarrow search for physics beyond $\mathsf{QFT}{+}\mathsf{GR}$

- Search for Lorentz violation ⇔ search for physics beyond QFT+GR
 - Preferred direction in spacetime

- Search for Lorentz violation ⇔ search for physics beyond QFT+GR
 - Preferred direction in spacetime
 - Isotropic Lorentz violation

- Search for Lorentz violation ⇔ search for physics beyond QFT+GR
 - Preferred direction in spacetime
 - Isotropic Lorentz violation
- Lorentz-violating Standard Model Extension (SME): Effective field theory framework for the study of Lorentz violation

- Search for Lorentz violation ⇔ search for physics beyond QFT+GR
 - Preferred direction in spacetime
 - Isotropic Lorentz violation
- Lorentz-violating Standard Model Extension (SME): Effective field theory framework for the study of Lorentz violation

+ Description at low energies (where we and our experiments are)

- Search for Lorentz violation ⇔ search for physics beyond QFT+GR
 - Preferred direction in spacetime
 - Isotropic Lorentz violation
- Lorentz-violating Standard Model Extension (SME): Effective field theory framework for the study of Lorentz violation
 - + Description at low energies (where we and our experiments are)
 - $+\,$ Theoretically consistent framework based on QFT, SM

- Search for Lorentz violation ⇔ search for physics beyond QFT+GR
 - Preferred direction in spacetime
 - Isotropic Lorentz violation
- Lorentz-violating Standard Model Extension (SME): Effective field theory framework for the study of Lorentz violation
 - + Description at low energies (where we and our experiments are)
 - $+\,$ Theoretically consistent framework based on QFT, SM
 - + Agnostic approach (bottom-up, data-driven)

- Search for Lorentz violation ⇔ search for physics beyond QFT+GR
 - Preferred direction in spacetime
 - Isotropic Lorentz violation
- Lorentz-violating Standard Model Extension (SME): Effective field theory framework for the study of Lorentz violation
 - + Description at low energies (where we and our experiments are)
 - $+\,$ Theoretically consistent framework based on QFT, SM
 - + Agnostic approach (bottom-up, data-driven)
 - $+\,$ Allows for comparison of data from different experiments

- Search for Lorentz violation ⇔ search for physics beyond QFT+GR
 - Preferred direction in spacetime
 - Isotropic Lorentz violation
- Lorentz-violating Standard Model Extension (SME): Effective field theory framework for the study of Lorentz violation
 - + Description at low energies (where we and our experiments are)
 - $+\,$ Theoretically consistent framework based on QFT, SM
 - + Agnostic approach (bottom-up, data-driven)
 - $+\,$ Allows for comparison of data from different experiments
- Tensions between theory and experiment in a_{μ} , a_{e} : Can these be explained by $c^{\mu\nu}$?

- Search for Lorentz violation ⇔ search for physics beyond QFT+GR
 - Preferred direction in spacetime
 - Isotropic Lorentz violation
- Lorentz-violating Standard Model Extension (SME): Effective field theory framework for the study of Lorentz violation
 - + Description at low energies (where we and our experiments are)
 - $+\,$ Theoretically consistent framework based on QFT, SM
 - + Agnostic approach (bottom-up, data-driven)
 - $+\,$ Allows for comparison of data from different experiments
- Tensions between theory and experiment in a_{μ} , a_{e} : Can these be explained by $c^{\mu\nu}$?

 $+~c^{\mu
u}$ enters via modified QED vertex, modified Gordon identity

- Search for Lorentz violation \Leftrightarrow search for physics beyond $\mathsf{QFT}{+}\mathsf{GR}$
 - Preferred direction in spacetime
 - Isotropic Lorentz violation
- Lorentz-violating Standard Model Extension (SME): Effective field theory framework for the study of Lorentz violation
 - + Description at low energies (where we and our experiments are)
 - $+\,$ Theoretically consistent framework based on QFT, SM
 - + Agnostic approach (bottom-up, data-driven)
 - $+\,$ Allows for comparison of data from different experiments
- Tensions between theory and experiment in a_{μ} , a_{e} : Can these be explained by $c^{\mu\nu}$?
 - $+~c^{\mu\nu}$ enters via modified QED vertex, modified Gordon identity
 - Constraints from vacuum Čerenkov radiation & photon decay

- Search for Lorentz violation ⇔ search for physics beyond QFT+GR
 - Preferred direction in spacetime
 - Isotropic Lorentz violation
- Lorentz-violating Standard Model Extension (SME): Effective field theory framework for the study of Lorentz violation
 - + Description at low energies (where we and our experiments are)
 - $+\,$ Theoretically consistent framework based on QFT, SM
 - + Agnostic approach (bottom-up, data-driven)
 - $+\,$ Allows for comparison of data from different experiments
- Tensions between theory and experiment in a_{μ} , a_{e} : Can these be explained by $c^{\mu\nu}$?
 - $+~c^{\mu\nu}$ enters via modified QED vertex, modified Gordon identity
 - Constraints from vacuum Čerenkov radiation & photon decay
 - \Rightarrow Nope, but it was worth checking.

Field equations for photons modified by k_F *:

$$M^{lpha\delta}(p)A_{\delta}(p)=0$$
, $M^{lpha\delta}(p)=\eta^{lpha\delta}p^2-p^{lpha}p^{\delta}-2(k_{
m F})^{lphaeta\gamma\delta}p_{eta}p_{eta}p_{\gamma}$.

Insert $\tilde{k}^{\mu\nu}$, linearise, def. $\tilde{q}^{\mu} \equiv \left(\eta^{\mu\nu} + \frac{1}{2}\tilde{k}^{\mu\nu}\right)q_{\nu}$, $\tilde{A}^{\mu} \equiv \left(\eta^{\mu\nu} + \frac{1}{2}\tilde{k}^{\mu\nu}\right)A_{\nu}$,

$$0 = ilde{A}^lpha ilde{q}_eta ilde{q}_eta^eta - ilde{q}^lpha ilde{q}_\gamma ilde{A}^\gamma + \dots$$
 .

Define $\tilde{F}_{\mu\nu} = \tilde{F}_{\mu\nu}(\tilde{q}) \equiv -i(\tilde{q}_{\mu}\tilde{A}_{\nu} - \tilde{q}_{\nu}\tilde{A}_{\mu}).$

$$\begin{split} \mathsf{i}\mathcal{M}^{(0)}_{\gamma,\mathsf{ss}'} &= -\frac{\mathsf{i}e}{2m}\overline{u}^{(s)} \left[\tilde{P}^{\mu}(\eta_{\mu\nu} - \tilde{k}_{\mu\nu}) \tilde{A}^{\nu}(q) \right. \\ &\left. -\frac{1}{2} \left(\eta_{\mu\varrho} - \frac{1}{2}\tilde{k}_{\mu\varrho} \right) \left(\eta_{\nu\sigma} - \frac{1}{2}\tilde{k}_{\nu\sigma} \right) \sigma^{\mu\nu} \tilde{F}^{\varrho\sigma}(q) \right] u^{(s')} \end{split}$$

$$\Rightarrow \delta\mathcal{M}^{(0)}_{\gamma,ss} \supset -\frac{e}{8m}\overline{u}^{(s)}(\tilde{k}^{\varrho\kappa}\sigma_{\kappa}{}^{\nu}-\tilde{k}^{\nu\kappa}\sigma_{\kappa}{}^{\varrho})u^{(s)}\tilde{F}_{\varrho\nu} = -\frac{e}{2m}(\tilde{k}^{11}+\tilde{k}^{22})BS^{z}$$

*D. Colladay, A. Kostelecký, arXiv:hep-ph/9809521