Vacuum polarization in the finite basis Dirac problem

Maen Salman and Trond Saue

Laboratoire de Chimie et Physique Quantiques
26-10-2022

EMMI Workshop "Accurate relativistic treatment of multielectron atoms and applications to Super-Heavy elements"

Plan and motivations

Presentation plan

(1) The Dirac equation
(1) Charge conjugation symmetry
(2) Finite basis approximation: Kinetic Balances

Plan and motivations

Presentation plan

(1) The Dirac equation
(1) Charge conjugation symmetry
(2) Finite basis approximation: Kinetic Balances
(2) α-order Vacuum Polarization (BSQED)
(1) Derive the suitable (for numerical calculations) $(Z \alpha)$ expansion expressions

Plan and motivations

Presentation plan

(1) The Dirac equation
(1) Charge conjugation symmetry
(2) Finite basis approximation: Kinetic Balances
(2) α-order Vacuum Polarization (BSQED)
(1) Derive the suitable (for numerical calculations) $(Z \alpha)$ expansion expressions
(2) Present VP density calculations in the finite basis
(1) Qualitative journey: the full α VP density
(2) Quantitative goal: the $\alpha(Z \alpha)^{n \geq 3}$ VP density

Plan and motivations

Presentation plan

(1) The Dirac equation
(1) Charge conjugation symmetry
(2) Finite basis approximation: Kinetic Balances
(2) α-order Vacuum Polarization (BSQED)
(1) Derive the suitable (for numerical calculations) $(Z \alpha)$ expansion expressions
(2) Present VP density calculations in the finite basis
(1) Qualitative journey: the full $\alpha \mathrm{VP}$ density
(2) Quantitative goal: the $\alpha(Z \alpha)^{n \geq 3} \mathrm{VP}$ density

Motivations to construct QED corrections from numerical Dirac solutions

- Effective VP potentials are not suited for practical calculations. ${ }^{a}$

Plan and motivations

Presentation plan

(1) The Dirac equation
(1) Charge conjugation symmetry
(2) Finite basis approximation: Kinetic Balances
(2) α-order Vacuum Polarization (BSQED)
(1) Derive the suitable (for numerical calculations) $(Z \alpha)$ expansion expressions
(2) Present VP density calculations in the finite basis
(1) Qualitative journey: the full $\alpha \mathrm{VP}$ density
(2) Quantitative goal: the $\alpha(Z \alpha)^{n \geq 3} \mathrm{VP}$ density

Motivations to construct QED corrections from numerical Dirac solutions

- Effective VP potentials are not suited for practical calculations. ${ }^{a}$
- Effective SE potentials are parameterized to fit exact 1e SE energy-shift. ${ }^{\text {bcd }}$

[^0]
Relativistic electron/positron theory

The electron behavior is, up to a large extent, predicted by the Dirac equation

$$
\begin{equation*}
\left[i \hbar \gamma^{\mu} \partial_{\mu}-m c\right] \psi^{e}(x)=0 \tag{1}
\end{equation*}
$$

Figure: Paul Dirac

Relativistic electron/positron theory

The electron behavior is, up to a large extent, predicted by the Dirac equation

$$
\begin{equation*}
\left[i \hbar \gamma^{\mu} \partial_{\mu}-m c\right] \psi^{e}(x)=0 \tag{1}
\end{equation*}
$$

In the presence of a general external four-potential $A^{\mu}=(\phi, \boldsymbol{A})^{\mu}$, this equation becomes $\left(q_{\text {electron }}=-e\right)$

$$
\begin{equation*}
\left[\gamma^{\mu}\left(i \hbar \partial_{\mu} \boxed{+e} A_{\mu}(x)\right)-m c\right] \psi^{e}(x)=0 \tag{2}
\end{equation*}
$$

Figure: Paul Dirac

Relativistic electron/positron theory

The electron behavior is, up to a large extent, predicted by the Dirac equation

$$
\begin{equation*}
\left[i \hbar \gamma^{\mu} \partial_{\mu}-m c\right] \psi^{e}(x)=0 \tag{1}
\end{equation*}
$$

In the presence of a general external four-potential $A^{\mu}=(\phi, \boldsymbol{A})^{\mu}$, this equation becomes $\left(q_{\text {electron }}=-e\right)$

$$
\begin{equation*}
\left[\gamma^{\mu}\left(i \hbar \partial_{\mu} \boxed{+e} A_{\mu}(x)\right)-m c\right] \psi^{e}(x)=0 \tag{2}
\end{equation*}
$$

The positron's (electron's antiparticle partner) wavefunction obeys

$$
\begin{equation*}
\left[\gamma^{\mu}\left(i \hbar \partial_{\mu} \boxed{-e} A_{\mu}(x)\right)-m c\right] \psi^{p}(x)=0 \tag{3}
\end{equation*}
$$

Figure: Paul Dirac

Figure: First identified positron

Relativistic electron/positron theory

The electron behavior is, up to a large extent, predicted by the Dirac equation

$$
\begin{equation*}
\left[i \hbar \gamma^{\mu} \partial_{\mu}-m c\right] \psi^{e}(x)=0 \tag{1}
\end{equation*}
$$

In the presence of a general external four-potential $A^{\mu}=(\phi, \boldsymbol{A})^{\mu}$, this equation becomes $\left(q_{\text {electron }}=-e\right)$

$$
\begin{equation*}
\left[\gamma^{\mu}\left(i \hbar \partial_{\mu} \boxed{+e} A_{\mu}(x)\right)-m c\right] \psi^{e}(x)=0 \tag{2}
\end{equation*}
$$

The positron's (electron's antiparticle partner) wavefunction obeys

$$
\begin{equation*}
\left[\gamma^{\mu}\left(i \hbar \partial_{\mu} \boxed{-e} A_{\mu}(x)\right)-m c\right] \psi^{p}(x)=0 \tag{3}
\end{equation*}
$$

The two wavefunctions are related by the charge conjugation operation

$$
\begin{equation*}
\psi^{p}(x)=\mathcal{C} \psi^{e}(x)=\gamma^{2}\left[\psi^{e}(x)\right]^{*} \tag{4}
\end{equation*}
$$

Figure: Paul Dirac

Figure: First identified positron

\mathcal{C}-symmetry in the time-independent problem

In the time-independent potential case: $A(x)=A(x)$, one can write

$$
\begin{equation*}
\psi_{n}(x)=e^{-\frac{i}{\hbar} E_{n} t} \psi_{n}(x) \tag{5}
\end{equation*}
$$

where $\left\{E_{n}, \psi_{n}(x)\right\}$ forms a solution of the time-independent Dirac equation:

$$
\begin{equation*}
\left[-c \boldsymbol{\alpha} \cdot[+i \hbar \boldsymbol{\nabla}-e \boldsymbol{A}(\boldsymbol{x})]+\beta m c^{2}-e \phi(\boldsymbol{x})\right] \quad \psi(\boldsymbol{x})=+E \quad \psi(\boldsymbol{x}) . \tag{6}
\end{equation*}
$$

\mathcal{C}-symmetry in the time-independent problem

In the time-independent potential case: $A(x)=A(x)$, one can write

$$
\begin{equation*}
\psi_{n}(x)=e^{-\frac{i}{\hbar} E_{n} t} \psi_{n}(x) \tag{5}
\end{equation*}
$$

where $\left\{E_{n}, \psi_{n}(x)\right\}$ forms a solution of the time-independent Dirac equation:

$$
\begin{equation*}
\left[-c \boldsymbol{\alpha} \cdot[+i \hbar \boldsymbol{\nabla}-e \boldsymbol{A}(\boldsymbol{x})]+\beta m c^{2}-e \phi(\boldsymbol{x})\right] \quad \psi(\boldsymbol{x})=+E \quad \psi(\boldsymbol{x}) . \tag{6}
\end{equation*}
$$

The charge-conjugated solution $\mathcal{C} \psi(\boldsymbol{x})$ (positron), obeys:

$$
\begin{equation*}
\left[-c \boldsymbol{\alpha} \cdot[+i \hbar \boldsymbol{\nabla}+e \boldsymbol{A}(\boldsymbol{x})]+\beta m c^{2}+e \phi(\boldsymbol{x})\right] \mathcal{C} \psi(\boldsymbol{x})=-E \mathcal{C} \psi(\boldsymbol{x}) . \tag{7}
\end{equation*}
$$

\mathcal{C}-symmetry in the time-independent problem

In the time-independent potential case: $A(x)=A(x)$, one can write

$$
\begin{equation*}
\psi_{n}(x)=e^{-\frac{i}{\hbar} E_{n} t} \psi_{n}(x) \tag{5}
\end{equation*}
$$

where $\left\{E_{n}, \psi_{n}(x)\right\}$ forms a solution of the time-independent Dirac equation:

$$
\begin{equation*}
\left[-c \boldsymbol{\alpha} \cdot[+i \hbar \boldsymbol{\nabla}-e \boldsymbol{A}(\boldsymbol{x})]+\beta m c^{2}-e \phi(\boldsymbol{x})\right] \quad \psi(\boldsymbol{x})=+E \quad \psi(\boldsymbol{x}) . \tag{6}
\end{equation*}
$$

The charge-conjugated solution $\mathcal{C} \psi(\boldsymbol{x})$ (positron), obeys:

$$
\begin{equation*}
\left[-c \boldsymbol{\alpha} \cdot[+i \hbar \boldsymbol{\nabla}+e \boldsymbol{A}(\boldsymbol{x})]+\beta m c^{2}+e \phi(\boldsymbol{x})\right] \mathcal{C} \psi(\boldsymbol{x})=-E \mathcal{C} \psi(\boldsymbol{x}) . \tag{7}
\end{equation*}
$$

	Electron	Positron
Charge	$-e$	$+e$
Wavefunction	$\psi(\boldsymbol{x})=\left[\begin{array}{c}\psi^{L}(\boldsymbol{x}) \\ \psi^{S}(\boldsymbol{x})\end{array}\right]$	$\mathcal{C} \psi(\boldsymbol{x})=\left[\begin{array}{r}\sigma_{2} \psi^{S *}(\boldsymbol{x}) \\ -\sigma_{2} \psi^{L *}(\boldsymbol{x})\end{array}\right]$
Energy	$+E$	$-E$

\mathcal{C}-symmetry in the time-independent problem

In the time-independent potential case: $A(x)=A(x)$, one can write

$$
\begin{equation*}
\psi_{n}(x)=e^{-\frac{i}{\hbar} E_{n} t} \psi_{n}(x) \tag{5}
\end{equation*}
$$

where $\left\{E_{n}, \psi_{n}(x)\right\}$ forms a solution of the time-independent Dirac equation:

$$
\begin{equation*}
\left[-c \boldsymbol{\alpha} \cdot[+i \hbar \boldsymbol{\nabla}-e \boldsymbol{A}(\boldsymbol{x})]+\beta m c^{2}-e \phi(\boldsymbol{x})\right] \quad \psi(\boldsymbol{x})=+E \quad \psi(\boldsymbol{x}) . \tag{6}
\end{equation*}
$$

The charge-conjugated solution $\mathcal{C} \psi(\boldsymbol{x})$ (positron), obeys:

$$
\begin{equation*}
\left[-c \boldsymbol{\alpha} \cdot[+i \hbar \boldsymbol{\nabla}+e \boldsymbol{A}(\boldsymbol{x})]+\beta m c^{2}+e \phi(\boldsymbol{x})\right] \mathcal{C} \psi(\boldsymbol{x})=-E \mathcal{C} \psi(\boldsymbol{x}) . \tag{7}
\end{equation*}
$$

	Electron	Positron
Charge	$-e$	$+e$
Wavefunction	$\psi(\boldsymbol{x})=\left[\begin{array}{c}\psi^{L}(\boldsymbol{x}) \\ \psi^{S}(\boldsymbol{x})\end{array}\right]$	$\mathcal{C} \psi(\boldsymbol{x})=\left[\begin{array}{r}\sigma_{2} \psi^{S *}(\boldsymbol{x}) \\ -\sigma_{2} \psi^{L *}(\boldsymbol{x})\end{array}\right]$
Energy	$+E$	$-E$

In the free-particle case (black spectrum), we have:

$$
\begin{align*}
& {\left[-c \boldsymbol{\alpha} \cdot i \hbar \boldsymbol{\nabla}+\beta m c^{2}\right] \quad \psi(\boldsymbol{x})=+E \mathcal{E}(\boldsymbol{x}) .} \tag{8}\\
& {\left[-c \boldsymbol{\alpha} \cdot i \hbar \boldsymbol{\nabla}+\beta m c^{2}\right] \mathcal{C} \psi(\boldsymbol{x})=-E \mathcal{C} \psi(\boldsymbol{x}) .} \tag{9}
\end{align*}
$$

Relativistic electron theory in the finite basis problem

The radial Dirac equation reads

$$
\left[\begin{array}{cc}
m c^{2}-e \phi(r)-E_{n, \kappa} & -c \hbar\left[\frac{d}{d r}-\frac{\kappa}{r}\right] \tag{10}\\
c \hbar\left[\frac{d}{d r}+\frac{\kappa}{r}\right] & -m c^{2}-e \phi(r)-E_{n, \kappa}
\end{array}\right]\left[\begin{array}{c}
P_{n, \kappa} \\
Q_{n, \kappa}
\end{array}\right]=0
$$

Relativistic electron theory in the finite basis problem

The radial Dirac equation reads

$$
\left[\begin{array}{cc}
m c^{2}-e \phi(r)-E_{n, \kappa} & -c \hbar\left[\frac{d}{d r}-\frac{\kappa}{r}\right] \tag{10}\\
c \hbar\left[\frac{d}{d r}+\frac{\kappa}{r}\right] & -m c^{2}-e \phi(r)-E_{n, \kappa}
\end{array}\right]\left[\begin{array}{c}
P_{n, \kappa} \\
Q_{n, \kappa}
\end{array}\right]=0
$$

L and S component functions ($P_{n, \kappa}$ and $Q_{n, \kappa}$) are expanded in L and S basis sets:

$$
\left[\begin{array}{c}
P_{n, \kappa} \tag{11}\\
Q_{n, \kappa}
\end{array}\right] \approx\left[\begin{array}{c}
\mathcal{P}_{\alpha, \kappa} \\
\mathcal{Q}_{\alpha, \kappa}
\end{array}\right]=\sum_{i=1}^{n_{\kappa}^{L}} c_{\alpha, \kappa, i}^{L}\left[\begin{array}{c}
\pi_{\kappa, i}^{L}(r) \\
0
\end{array}\right]+\sum_{i=1}^{n_{\kappa}^{S}} c_{\alpha, \kappa, i}^{S}\left[\begin{array}{c}
0 \\
\pi_{\kappa, i}^{S}(r)
\end{array}\right]
$$

Relativistic electron theory in the finite basis problem

The radial Dirac equation reads

$$
\left[\begin{array}{cc}
m c^{2}-e \phi(r)-E_{n, \kappa} & -c \hbar\left[\frac{d}{d r}-\frac{\kappa}{r}\right] \tag{10}\\
c \hbar\left[\frac{d}{d r}+\frac{\kappa}{r}\right] & -m c^{2}-e \phi(r)-E_{n, \kappa}
\end{array}\right]\left[\begin{array}{c}
P_{n, \kappa} \\
Q_{n, \kappa}
\end{array}\right]=0
$$

L and S component functions ($P_{n, \kappa}$ and $Q_{n, \kappa}$) are expanded in L and S basis sets:

$$
\left[\begin{array}{c}
P_{n, \kappa} \tag{11}\\
Q_{n, \kappa}
\end{array}\right] \approx\left[\begin{array}{c}
\mathcal{P}_{\alpha, \kappa} \\
\mathcal{Q}_{\alpha, \kappa}
\end{array}\right]=\sum_{i=1}^{n_{\kappa}^{L}} c_{\alpha, \kappa, i}^{L}\left[\begin{array}{c}
\pi_{\kappa, i}^{L}(r) \\
0
\end{array}\right]+\sum_{i=1}^{n_{\kappa}^{S}} c_{\alpha, \kappa, i}^{S}\left[\begin{array}{c}
0 \\
\pi_{\kappa, i}^{S}(r)
\end{array}\right]
$$

The problem

Arbitrary choices of radial functions $\pi_{\kappa, i}^{L}$ and $\pi_{\kappa, i}^{S}$ lead to:
(1) Spurious solutions (non-physical eigenvalues).
(2) Variational collapse (non-physical convergence to low energy values).

Relativistic electron theory in the finite basis problem

The radial Dirac equation reads

$$
\left[\begin{array}{cc}
m c^{2}-e \phi(r)-E_{n, \kappa} & -c \hbar\left[\frac{d}{d r}-\frac{\kappa}{r}\right] \tag{10}\\
c \hbar\left[\frac{d}{d r}+\frac{\kappa}{r}\right] & -m c^{2}-e \phi(r)-E_{n, \kappa}
\end{array}\right]\left[\begin{array}{c}
P_{n, \kappa} \\
Q_{n, \kappa}
\end{array}\right]=0
$$

L and S component functions ($P_{n, \kappa}$ and $Q_{n, \kappa}$) are expanded in L and S basis sets:

$$
\left[\begin{array}{c}
P_{n, \kappa} \tag{11}\\
Q_{n, \kappa}
\end{array}\right] \approx\left[\begin{array}{c}
\mathcal{P}_{\alpha, \kappa} \\
\mathcal{Q}_{\alpha, \kappa}
\end{array}\right]=\sum_{i=1}^{n_{\kappa}^{L}} c_{\alpha, \kappa, i}^{L}\left[\begin{array}{c}
\pi_{\kappa, i}^{L}(r) \\
0
\end{array}\right]+\sum_{i=1}^{n_{\kappa}^{S}} c_{\alpha, \kappa, i}^{S}\left[\begin{array}{c}
0 \\
\pi_{\kappa, i}^{S}(r)
\end{array}\right]
$$

The problem

Arbitrary choices of radial functions $\pi_{\kappa, i}^{L}$ and $\pi_{\kappa, i}^{S}$ lead to:
(1) Spurious solutions (non-physical eigenvalues).
(2) Variational collapse (non-physical convergence to low energy values).

The solution

Respect the right (or at least the approximated) coupling between large and small component functions: Kinetic balance!

Kinetic balances

The radial Dirac equation can be written as:

$$
\begin{align*}
Q_{n, \kappa} & =\frac{\hbar}{m c} \frac{1}{1+\left(e \phi+E_{n, \kappa}\right) / m c^{2}}\left[\frac{d}{d r}+\frac{\kappa}{r}\right] P_{n, \kappa} \tag{12}\\
P_{n, \kappa} & =\frac{\hbar}{m c} \frac{1}{1-\left(e \phi+E_{n, \kappa}\right) / m c^{2}}\left[\frac{d}{d r}-\frac{\kappa}{r}\right] Q_{n, \kappa} . \tag{13}
\end{align*}
$$

${ }^{1}$ Sun, Q., Liu, W and Kutzelnigg W. Theor. Chem. Acc. 129.3 (2011): 423-436. ${ }^{2}$ Shabaev, V. M., et al. Phys. Rev. Lett. 93.13 (2004): 130405.

Kinetic balances

The radial Dirac equation can be written as:

$$
\begin{align*}
Q_{n, \kappa} & =\frac{\hbar}{m c} \frac{1}{1+\left(e \phi+E_{n, \kappa}\right) / m c^{2}}\left[\frac{d}{d r}+\frac{\kappa}{r}\right] P_{n, \kappa} \tag{12}\\
P_{n, \kappa} & =\frac{\hbar}{m c} \frac{1}{1-\left(e \phi+E_{n, k}\right) / m c^{2}}\left[\frac{d}{d r}-\frac{\kappa}{r}\right] Q_{n, \kappa} . \tag{13}
\end{align*}
$$

Restricted Kinetic Balance

$Q_{\kappa} \approx \frac{\hbar}{2 m c}\left[\frac{d}{d r}+\frac{\kappa}{r}\right] P_{\kappa}$

[^1]
Kinetic balances

The radial Dirac equation can be written as:

$$
\begin{align*}
& Q_{n, \kappa}=\frac{\hbar}{m c} \frac{1}{1+\left(e \phi+E_{n, \kappa}\right) / m c^{2}}\left[\frac{d}{d r}+\frac{\kappa}{r}\right] P_{n, \kappa} \tag{12}\\
& P_{n, \kappa}=\frac{\hbar}{m c} \frac{1}{1-\left(e \phi+E_{n, \kappa}\right) / m c^{2}}\left[\frac{d}{d r}-\frac{\kappa}{r}\right] Q_{n, \kappa} . \tag{13}
\end{align*}
$$

Restricted Kinetic Balance

$Q_{\kappa} \approx \frac{\hbar}{2 m c}\left[\frac{d}{d r}+\frac{\kappa}{r}\right] P_{\kappa}$

$$
\left[\begin{array}{l}
\mathcal{P}_{\alpha, \kappa} \\
\mathcal{Q}_{\alpha, \kappa}
\end{array}\right]=\sum_{i=1}^{n_{\kappa}} c_{\alpha, \kappa, i}^{L}\left[\begin{array}{c}
\pi_{\kappa, i}^{L} \\
0
\end{array}\right]+\sum_{i=1}^{n_{\kappa}} c_{\alpha, \kappa, i}^{S}\left[\begin{array}{c}
0 \\
\frac{\hbar}{2 m c}\left[\frac{d}{d r}+\frac{\kappa}{r}\right] \pi_{\kappa, i}^{L}
\end{array}\right]
$$

[^2]${ }^{2}$ Shabaev, V. M., et al. Phys. Rev. Lett. 93.13 (2004): 130405.

Kinetic balances

The radial Dirac equation can be written as:

$$
\begin{align*}
& Q_{n, \kappa}=\frac{\hbar}{m c} \frac{1}{1+\left(e \phi+E_{n, \kappa}\right) / m c^{2}}\left[\frac{d}{d r}+\frac{\kappa}{r}\right] P_{n, \kappa} \tag{12}\\
& P_{n, \kappa}=\frac{\hbar}{m c} \frac{1}{1-\left(e \phi+E_{n, \kappa}\right) / m c^{2}}\left[\frac{d}{d r}-\frac{\kappa}{r}\right] Q_{n, \kappa} . \tag{13}
\end{align*}
$$

Restricted Kinetic Balance

$Q_{\kappa} \approx \frac{\hbar}{2 m c}\left[\frac{d}{d r}+\frac{\kappa}{r}\right] P_{\kappa}$

- RKB basis set

$$
\left[\begin{array}{l}
\mathcal{P}_{\alpha, \kappa} \\
\mathcal{Q}_{\alpha, \kappa}
\end{array}\right]=\sum_{i=1}^{n_{\kappa}} c_{\alpha, \kappa, i}^{L}\left[\begin{array}{c}
\pi_{\kappa, i}^{L} \\
0
\end{array}\right]+\sum_{i=1}^{n_{\kappa}} c_{\alpha, \kappa, i}^{S}\left[\begin{array}{c}
0 \\
\frac{\hbar}{2 m c}\left[\frac{d}{d r}+\frac{\kappa}{r}\right] \pi_{\kappa, i}^{L}
\end{array}\right]
$$

Inverse Kinetic Balance
$P_{n, \kappa} \approx \frac{\hbar}{2 m c}\left[\frac{d}{d r}-\frac{\kappa}{r}\right] Q_{n, \kappa}$
${ }^{1}$ Sun, Q., Liu, W and Kutzelnigg W. Theor. Chem. Acc. 129.3 (2011): 423-436.
${ }^{2}$ Shabaev, V. M., et al. Phys. Rev. Lett. 93.13 (2004): 130405.

Kinetic balances

The radial Dirac equation can be written as:

$$
\begin{align*}
& Q_{n, \kappa}=\frac{\hbar}{m c} \frac{1}{1+\left(e \phi+E_{n, \kappa}\right) / m c^{2}}\left[\frac{d}{d r}+\frac{\kappa}{r}\right] P_{n, \kappa} \tag{12}\\
& P_{n, \kappa}=\frac{\hbar}{m c} \frac{1}{1-\left(e \phi+E_{n, \kappa}\right) / m c^{2}}\left[\frac{d}{d r}-\frac{\kappa}{r}\right] Q_{n, \kappa} . \tag{13}
\end{align*}
$$

Restricted Kinetic Balance

$Q_{\kappa} \approx \frac{\hbar}{2 m c}\left[\frac{d}{d r}+\frac{\kappa}{r}\right] P_{\kappa}$
Inverse Kinetic Balance
$P_{n, \kappa} \approx \frac{\hbar}{2 m c}\left[\frac{d}{d r}-\frac{\kappa}{r}\right] Q_{n, \kappa}$

- RKB basis set

$$
\left.\left[\begin{array}{c}
\mathcal{P}_{\alpha, \kappa} \\
\mathcal{Q}_{\alpha, \kappa}
\end{array}\right]=\sum_{i=1}^{n_{\kappa}} c_{\alpha, \kappa, i}^{L}\left[\begin{array}{c}
\pi_{\kappa, i}^{L} \\
0
\end{array}\right]+\sum_{i=1}^{n_{\kappa}} c_{\alpha, \kappa, i}^{S}\left[\begin{array}{c}
0 \\
\frac{\hbar}{2 m c}\left[\frac{d}{d r}+\frac{\kappa}{r}\right]
\end{array}\right] \pi_{\kappa, i}^{L}\right]
$$

- IKB basis set ${ }^{1}$

$$
\left[\begin{array}{c}
\mathcal{P}_{\alpha, \kappa} \\
\mathcal{Q}_{\alpha, \kappa}
\end{array}\right]=\sum_{i=1}^{n_{\kappa}} c_{\alpha, \kappa, i}^{L}\left[\begin{array}{c}
\frac{\hbar}{2 m c}\left[\begin{array}{c}
\frac{d}{d r}-\frac{\kappa}{r} \\
0
\end{array}\right] \pi_{\kappa, i}^{S}
\end{array}\right]+\sum_{i=1}^{n_{\kappa}} c_{\alpha, \kappa, i}^{S}\left[\begin{array}{c}
0 \\
\pi_{\kappa, i}^{S}
\end{array}\right]
$$

${ }^{1}$ Sun, Q., Liu, W and Kutzelnigg W. Theor. Chem. Acc. 129.3 (2011): 423-436.
${ }^{2}$ Shabaev, V. M., et al. Phys. Rev. Lett. 93.13 (2004): 130405.

Kinetic balances

The radial Dirac equation can be written as:

$$
\begin{align*}
& Q_{n, \kappa}=\frac{\hbar}{m c} \frac{1}{1+\left(e \phi+E_{n, \kappa}\right) / m c^{2}}\left[\frac{d}{d r}+\frac{\kappa}{r}\right] P_{n, \kappa} \tag{12}\\
& P_{n, \kappa}=\frac{\hbar}{m c} \frac{1}{1-\left(e \phi+E_{n, \kappa}\right) / m c^{2}}\left[\frac{d}{d r}-\frac{\kappa}{r}\right] Q_{n, \kappa} . \tag{13}
\end{align*}
$$

Restricted Kinetic Balance

$Q_{\kappa} \approx \frac{\hbar}{2 m c}\left[\frac{d}{d r}+\frac{\kappa}{r}\right] P_{\kappa}$
Inverse Kinetic Balance
$P_{n, \kappa} \approx \frac{\hbar}{2 m c}\left[\frac{d}{d r}-\frac{\kappa}{r}\right] Q_{n, \kappa}$

- RKB basis set

$$
\left.\left[\begin{array}{c}
\mathcal{P}_{\alpha, \kappa} \\
\mathcal{Q}_{\alpha, \kappa}
\end{array}\right]=\sum_{i=1}^{n_{\kappa}} c_{\alpha, \kappa, i}^{L}\left[\begin{array}{c}
\pi_{\kappa, i}^{L} \\
0
\end{array}\right]+\sum_{i=1}^{n_{\kappa}} c_{\alpha, \kappa, i}^{S}\left[\begin{array}{c}
0 \\
\frac{\hbar}{2 m c}\left[\frac{d}{d r}+\frac{\kappa}{r}\right]
\end{array}\right] \pi_{\kappa, i}^{L}\right]
$$

- IKB basis set ${ }^{1}$

$$
\left[\begin{array}{c}
\mathcal{P}_{\alpha, \kappa} \\
\mathcal{Q}_{\alpha, \kappa}
\end{array}\right]=\sum_{i=1}^{n_{\kappa}} c_{\alpha, \kappa, i}^{L}\left[\begin{array}{c}
\frac{\hbar}{2 m c}\left[\begin{array}{c}
\frac{d}{d r}-\frac{\kappa}{r} \\
0
\end{array}\right] \pi_{\kappa, i}^{S}
\end{array}\right]+\sum_{i=1}^{n_{\kappa}} c_{\alpha, \kappa, i}^{S}\left[\begin{array}{c}
0 \\
\pi_{\kappa, i}^{S}
\end{array}\right]
$$

- Dual Kinetic Balance (DKB) basis set ${ }^{2}$

$$
\left[\begin{array}{c}
\mathcal{P}_{\alpha, \kappa} \\
\mathcal{Q}_{\alpha, \kappa}
\end{array}\right]=\sum_{i=1}^{n_{\kappa}^{L}} c_{\alpha, \kappa, i}^{L}\left[\begin{array}{c}
\pi_{\kappa, i}^{L} \\
\frac{\hbar}{2 m c}\left[\frac{d}{d r}+\frac{\kappa}{r}\right] \pi_{\kappa, i}^{L}
\end{array}\right]+\sum_{i=1}^{n_{\kappa}^{S}} c_{\alpha, \kappa, i}^{S}\left[\begin{array}{c}
\frac{\hbar}{2 m c}\left[\frac{d}{d r}-\frac{\kappa}{r}\right] \pi_{\kappa, i}^{S} \\
\pi_{\kappa, i}^{S}
\end{array}\right]
$$

${ }^{1}$ Sun, Q., Liu, W and Kutzelnigg W. Theor. Chem. Acc. 129.3 (2011): 423-436.
${ }^{2}$ Shabaev, V. M., et al. Phys. Rev. Lett. 93.13 (2004): 130405.

\mathcal{C}-symmetry in the finite basis

A basis set is \mathcal{C}-symmetric if

$$
\mathcal{C} \varphi_{i}(\boldsymbol{x}) \in\left\{\varphi_{j}(\boldsymbol{x})\right\}_{j=1}^{n}, \quad \forall i
$$

${ }^{3}$ Maen Salman, and Trond Saue. "Charge conjugation symmetry in the finite basis approximation of the Dirac equation." Symmetry 12.7 (2020): 1121.

\mathcal{C}-symmetry in the finite basis

A basis set is \mathcal{C}-symmetric if

$$
\mathcal{C} \varphi_{i}(x) \in\left\{\varphi_{j}(x)\right\}_{j=1}^{n}, \quad \forall i
$$

$$
\begin{align*}
& \text { RKB can be made } \\
& \begin{array}{l}
\mathcal{C} \text {-symmetric only with }
\end{array} \\
& \qquad \begin{array}{l}
\pi_{\kappa, i}^{L}=r j_{\ell}\left(b_{|\kappa|, i} r\right) \\
\pi_{\kappa, i}^{S}=r j_{\ell-\operatorname{sgn}(\kappa)}\left(b_{|\kappa|, i} r\right)
\end{array} \tag{14}
\end{align*}
$$

This is not a practical basis.

[^3]
\mathcal{C}-symmetry in the finite basis

A basis set is \mathcal{C}-symmetric if

$$
\mathcal{C} \varphi_{i}(x) \in\left\{\varphi_{j}(x)\right\}_{j=1}^{n}, \quad \forall i
$$

RKB can be made

\mathcal{C}-symmetric only with

$$
\begin{align*}
\pi_{\kappa, i}^{L} & =r j_{\ell}\left(b_{|\kappa|, i} r\right) \tag{14}\\
\pi_{\kappa, i}^{S} & =r j_{\ell-\operatorname{sgn}(\kappa)}\left(b_{|\kappa|, i} r\right)
\end{align*}
$$

This is not a practical basis.

DKB can be made

 C-symmetric with ${ }^{3}$$$
\begin{equation*}
\pi_{-\kappa, i}^{L}=\pi_{+\kappa, i}^{S} \tag{15}
\end{equation*}
$$

without restrictions.

[^4]
\mathcal{C}-symmetry in the finite basis

A basis set is \mathcal{C}-symmetric if

$$
\mathcal{C} \varphi_{i}(\boldsymbol{x}) \in\left\{\varphi_{j}(\boldsymbol{x})\right\}_{j=1}^{n}, \quad \forall i
$$

RKB can be made
\mathcal{C}-symmetric only with

$$
\begin{align*}
& \pi_{\kappa, i}^{L}=r j_{\ell}\left(b_{|\kappa|, i} r\right) \\
& \pi_{\kappa, i}^{S}=r j_{\ell-\operatorname{sgn}(\kappa)}\left(b_{|\kappa|, i} r\right) \tag{14}
\end{align*}
$$

This is not a practical basis.

DKB can be made

 C-symmetric with ${ }^{3}$$$
\begin{equation*}
\pi_{-\kappa, i}^{L}=\pi_{+\kappa, i}^{S} \tag{15}
\end{equation*}
$$

without restrictions.

C-DKB with Gaussian functions

The spherical Gaussian basis functions are:

$$
\begin{align*}
& \pi_{\kappa, i}^{L}=r^{\left|\kappa+\frac{1}{2}\right|+\frac{1}{2}} e^{-\zeta_{\kappa, i}^{L} r^{2}} \tag{16}\\
& \pi_{\kappa, i}^{S}=r^{\left|\kappa-\frac{1}{2}\right|+\frac{1}{2}} e^{-\zeta_{\kappa, i}^{S} r^{2}} \tag{17}
\end{align*}
$$

Gaussian DKB becomes \mathcal{C}-symmetric with

κ	-1	+1	-2	+2	\ldots
ζ_{κ}^{L}	\bullet	\bullet	\bullet	\bullet	\ldots
ζ_{κ}^{S}	\bullet	\bullet	\bullet	\bullet	\ldots

Table: Same color dots $=$ same set of exponents.
${ }^{3}$ Maen Salman, and Trond Saue. "Charge conjugation symmetry in the finite basis approximation of the Dirac equation." Symmetry 12.7 (2020): 1121.

Bound-state QED

A fundamental quantity in the QED problem is the scattering matrix ($\hat{\mathcal{S}}$-matrix)

$$
\begin{equation*}
\hat{\mathcal{S}}(\epsilon, \lambda)=\mathrm{T}\left[\exp \left(\frac{\lambda}{i \hbar c} \int d^{4} x e^{-\frac{\epsilon}{\hbar}|t|} \hat{\mathcal{H}}_{l}^{\mathrm{QED}}(x)\right)\right], \quad \text { with } \quad x=(c t, \boldsymbol{x}) \tag{18}
\end{equation*}
$$

$0<\epsilon \ll 1$ (adiabatic switch term),

Bound-state QED

A fundamental quantity in the QED problem is the scattering matrix ($\hat{\mathcal{S}}$-matrix)

$$
\begin{equation*}
\hat{\mathcal{S}}(\epsilon, \lambda)=\mathrm{T}\left[\exp \left(\frac{\lambda}{i \hbar c} \int d^{4} x e^{-\frac{\epsilon}{\hbar}|t|} \hat{\mathcal{H}}_{l}^{\mathrm{QED}}(x)\right)\right], \quad \text { with } \quad x=(c t, \boldsymbol{x}) \tag{18}
\end{equation*}
$$

$0<\epsilon \ll 1$ (adiabatic switch term), $\hat{\mathcal{H}}_{l}^{\text {QED }}$ is the QED interaction Hamiltonian density

$$
\begin{equation*}
\hat{\mathcal{H}}_{l}^{\mathrm{QED}}(x)=-e c \overline{\hat{\Psi}}(x) \gamma^{\mu} \hat{\Psi}(x) \hat{A}_{\mu}(x) \tag{19}
\end{equation*}
$$

This equation couples the electron field operator $\hat{\Psi}(x)$ that solves

$$
\begin{equation*}
\left[\gamma^{\mu}\left(i \hbar \partial_{\mu}+e A_{\mu}^{e}(x)\right)-m c\right] \hat{\Psi}(x)=0, \quad \text { with } \quad A_{\mu}^{e}(x): \text { external potential, } \tag{20}
\end{equation*}
$$

to the photon field operator $\hat{A}_{\mu}(x)$.

Bound-state QED

A fundamental quantity in the QED problem is the scattering matrix ($\hat{\mathcal{S}}$-matrix)

$$
\begin{equation*}
\hat{\mathcal{S}}(\epsilon, \lambda)=\mathrm{T}\left[\exp \left(\frac{\lambda}{i \hbar c} \int d^{4} x e^{-\frac{\epsilon}{\hbar}|t|} \hat{\mathcal{H}}_{l}^{\mathrm{QED}}(x)\right)\right], \quad \text { with } \quad x=(c t, \boldsymbol{x}) \tag{18}
\end{equation*}
$$

$0<\epsilon \ll 1$ (adiabatic switch term), $\hat{\mathcal{H}}_{l}^{\text {QED }}$ is the QED interaction Hamiltonian density

$$
\begin{equation*}
\hat{\mathcal{H}}_{l}^{\mathrm{QED}}(x)=-e c \overline{\hat{\Psi}}(x) \gamma^{\mu} \hat{\Psi}(x) \hat{A}_{\mu}(x) \tag{19}
\end{equation*}
$$

This equation couples the electron field operator $\hat{\Psi}(x)$ that solves

$$
\begin{equation*}
\left[\gamma^{\mu}\left(i \hbar \partial_{\mu}+e A_{\mu}^{e}(x)\right)-m c\right] \hat{\Psi}(x)=0, \quad \text { with } \quad A_{\mu}^{e}(x): \text { external potential, } \tag{20}
\end{equation*}
$$

to the photon field operator $\hat{A}_{\mu}(x)$.

(a) Single-photon exchange

Figure: The no-real-photon e^{2}-order BSQED corrections $\left(\hat{\mathcal{S}}^{(2)}\right)$

Bound-state QED

A fundamental quantity in the QED problem is the scattering matrix ($\hat{\mathcal{S}}$-matrix)

$$
\begin{equation*}
\hat{\mathcal{S}}(\epsilon, \lambda)=\mathrm{T}\left[\exp \left(\frac{\lambda}{i \hbar c} \int d^{4} x e^{-\frac{\epsilon}{\hbar}|t|} \hat{\mathcal{H}}_{l}^{\mathrm{QED}}(x)\right)\right], \quad \text { with } \quad x=(c t, \boldsymbol{x}) \tag{18}
\end{equation*}
$$

$0<\epsilon \ll 1$ (adiabatic switch term), $\hat{\mathcal{H}}_{l}^{\text {QED }}$ is the QED interaction Hamiltonian density

$$
\begin{equation*}
\hat{\mathcal{H}}_{l}^{\mathrm{QED}}(x)=-e c \overline{\hat{\Psi}}(x) \gamma^{\mu} \hat{\Psi}(x) \hat{A}_{\mu}(x) \tag{19}
\end{equation*}
$$

This equation couples the electron field operator $\hat{\Psi}(x)$ that solves

$$
\begin{equation*}
\left[\gamma^{\mu}\left(i \hbar \partial_{\mu}+e A_{\mu}^{e}(x)\right)-m c\right] \hat{\Psi}(x)=0, \quad \text { with } \quad A_{\mu}^{e}(x): \text { external potential } \tag{20}
\end{equation*}
$$

to the photon field operator $\hat{A}_{\mu}(x)$.

(a) Single-photon exchange
(b) Vacuum polarization

Figure: The no-real-photon e^{2}-order BSQED corrections $\left(\hat{\mathcal{S}}^{(2)}\right)$

Bound-state QED

A fundamental quantity in the QED problem is the scattering matrix ($\hat{\mathcal{S}}$-matrix)

$$
\begin{equation*}
\hat{\mathcal{S}}(\epsilon, \lambda)=\mathrm{T}\left[\exp \left(\frac{\lambda}{i \hbar c} \int d^{4} x e^{-\frac{\epsilon}{\hbar}|t|} \hat{\mathcal{H}}_{l}^{\mathrm{QED}}(x)\right)\right], \quad \text { with } \quad x=(c t, \boldsymbol{x}) \tag{18}
\end{equation*}
$$

$0<\epsilon \ll 1$ (adiabatic switch term), $\hat{\mathcal{H}}_{l}^{\text {QED }}$ is the QED interaction Hamiltonian density

$$
\begin{equation*}
\hat{\mathcal{H}}_{l}^{\mathrm{QED}}(x)=-e c \overline{\hat{\Psi}}(x) \gamma^{\mu} \hat{\Psi}(x) \hat{A}_{\mu}(x) \tag{19}
\end{equation*}
$$

This equation couples the electron field operator $\hat{\Psi}(x)$ that solves

$$
\begin{equation*}
\left[\gamma^{\mu}\left(i \hbar \partial_{\mu}+e A_{\mu}^{e}(x)\right)-m c\right] \hat{\Psi}(x)=0, \quad \text { with } \quad A_{\mu}^{e}(x): \text { external potential, } \tag{20}
\end{equation*}
$$

to the photon field operator $\hat{A}_{\mu}(x)$.

(a) Single-photon exchange

(b) Vacuum polarization

(c) Self-energy

Figure: The no-real-photon e^{2}-order BSQED corrections $\left(\hat{\mathcal{S}}^{(2)}\right)$

Vacuum polarization

(a) The hydrogen problem

Vacuum polarization

(a) The hydrogen problem

(b) The real hydrogen problem

Vacuum polarization

(a) The hydrogen problem

(b) The real hydrogen problem

(c) Vacuum polarization

Vacuum polarization

(a) The hydrogen problem

(b) The real hydrogen problem (c) Vacuum polarization In the presence of an external four-potential

$$
\begin{equation*}
A^{e}(x)=(\phi(x) / c, 0) \tag{21}
\end{equation*}
$$

the VP energy-shift experienced by an atomic state $\left\{E_{i}, \psi_{i}\right\}$ becomes

$$
\begin{equation*}
E_{i}^{\mathrm{VP}}=-e \int d^{3} x_{1} \int d^{3} x_{2} \psi_{i}^{\dagger}\left(\boldsymbol{x}_{1}\right) \psi_{i}\left(\boldsymbol{x}_{1}\right) \frac{1}{4 \pi \varepsilon_{0}\left|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right|} \rho^{\mathrm{VP}}\left(\boldsymbol{x}_{2}\right) \tag{22}
\end{equation*}
$$

where the vacuum polarization cloud density can be written as

$$
\begin{equation*}
\rho^{\mathrm{VP}}(\boldsymbol{x})=\frac{e}{2}\left[\sum_{\boldsymbol{E}_{i}>0} \psi_{i}^{\dagger}(\boldsymbol{x}) \psi_{i}(\boldsymbol{x})-\sum_{E_{i}<0} \psi_{i}^{\dagger}(\boldsymbol{x}) \psi_{i}(\boldsymbol{x})\right] \tag{23}
\end{equation*}
$$

Vacuum polarization

The VP density is given by the following formula ${ }^{4}$:

$$
\begin{equation*}
\rho^{\mathrm{VP}}(\boldsymbol{x})=\frac{e}{2}\left[\sum_{E_{i}>0} \psi_{i}^{\dagger}(\boldsymbol{x}) \psi_{i}(\boldsymbol{x})-\sum_{E_{i}<0} \psi_{i}^{\dagger}(\boldsymbol{x}) \psi_{i}(\boldsymbol{x})\right] \tag{24}
\end{equation*}
$$

[^5]
Vacuum polarization

The VP density is given by the following formula ${ }^{4}$:

$$
\begin{equation*}
\rho^{\mathrm{VP}}(\boldsymbol{x})=\frac{e}{2}\left[\sum_{E_{i}>0} \psi_{i}^{\dagger}(\boldsymbol{x}) \psi_{i}(\boldsymbol{x})-\sum_{E_{i}<0} \psi_{i}^{\dagger}(\boldsymbol{x}) \psi_{i}(\boldsymbol{x})\right] \tag{24}
\end{equation*}
$$

In the spherical problem, one can use the spherical spinors' properties to write:

$$
\begin{align*}
& \rho^{\mathrm{VP}}(\boldsymbol{x})=\sum_{\kappa= \pm 1, \pm 2, \ldots} \rho_{\kappa}^{\mathrm{VP}}(\boldsymbol{x}) \tag{25}\\
& \rho_{\kappa}^{\mathrm{VP}}(\boldsymbol{x})=\frac{e|\kappa|}{4 \pi r^{2}} \sum_{n} \operatorname{sgn}\left(E_{n, \kappa}\right)\left[P_{n, \kappa}^{2}+Q_{n, \kappa}^{2}\right], \tag{26}
\end{align*}
$$

[^6]
Vacuum polarization

The VP density is given by the following formula ${ }^{4}$:

$$
\begin{equation*}
\rho^{\mathrm{VP}}(\boldsymbol{x})=\frac{e}{2}\left[\sum_{\mathrm{E}_{i}>0} \psi_{i}^{\dagger}(\boldsymbol{x}) \psi_{i}(\boldsymbol{x})-\sum_{E_{i}<0} \psi_{i}^{\dagger}(\boldsymbol{x}) \psi_{i}(\boldsymbol{x})\right] \tag{24}
\end{equation*}
$$

In the spherical problem, one can use the spherical spinors' properties to write:

$$
\begin{align*}
& \rho^{\mathrm{VP}}(\boldsymbol{x})=\sum_{\kappa= \pm 1, \pm 2, \ldots} \rho_{\kappa}^{\mathrm{VP}}(\boldsymbol{x}) \tag{25}\\
& \rho_{\kappa}^{\mathrm{VP}}(\boldsymbol{x})=\frac{e|\kappa|}{4 \pi r^{2}} \sum_{n} \operatorname{sgn}\left(E_{n, \kappa}\right)\left[P_{n, \kappa}^{2}+Q_{n, \kappa}^{2}\right] \tag{26}
\end{align*}
$$

In the spherical free-particle case, \mathcal{C}-symmetry allows to write the $-\kappa$ density as:

$$
\begin{equation*}
\rho_{-\kappa}^{\mathrm{VP}}(\boldsymbol{x})=\frac{e|\kappa|}{4 \pi r^{2}} \sum_{n} \operatorname{sgn}\left(E_{n,-\kappa}\right)\left[P_{n,-\kappa}^{2}+Q_{n,-\kappa}^{2}\right]=-\rho_{\kappa}^{\mathrm{VP}}(\boldsymbol{x}) \tag{27}
\end{equation*}
$$

[^7]
Vacuum polarization

The VP density is given by the following formula ${ }^{4}$:

$$
\begin{equation*}
\rho^{\mathrm{VP}}(\boldsymbol{x})=\frac{e}{2}\left[\sum_{E_{i}>0} \psi_{i}^{\dagger}(\boldsymbol{x}) \psi_{i}(\boldsymbol{x})-\sum_{E_{i}<0} \psi_{i}^{\dagger}(\boldsymbol{x}) \psi_{i}(\boldsymbol{x})\right] \tag{24}
\end{equation*}
$$

In the spherical problem, one can use the spherical spinors' properties to write:

$$
\begin{align*}
\rho^{\mathrm{VP}}(\boldsymbol{x}) & =\sum_{\kappa= \pm 1, \pm 2, \ldots} \rho_{\kappa}^{\mathrm{VP}}(\boldsymbol{x}) \tag{25}\\
\rho_{\kappa}^{\mathrm{VP}}(\boldsymbol{x}) & =\frac{e|\kappa|}{4 \pi r^{2}} \sum_{n} \operatorname{sgn}\left(E_{n, \kappa}\right)\left[P_{n, \kappa}^{2}+Q_{n, \kappa}^{2}\right] \tag{26}
\end{align*}
$$

In the spherical free-particle case, \mathcal{C}-symmetry allows to write the $-\kappa$ density as:

$$
\begin{equation*}
\rho_{-\kappa}^{\mathrm{VP}}(\boldsymbol{x})=\frac{e|\kappa|}{4 \pi r^{2}} \sum_{n} \operatorname{sgn}\left(E_{n,-\kappa}\right)\left[P_{n,-\kappa}^{2}+Q_{n,-\kappa}^{2}\right]=-\rho_{\kappa}^{\mathrm{VP}}(\boldsymbol{x}) \tag{27}
\end{equation*}
$$

This relation shows that opposite κ-sign densities cancel each other out:

$$
\begin{equation*}
\rho^{\mathrm{VP}}(\boldsymbol{x})=\sum_{\kappa=+1,+2 \ldots}\left[\rho_{\kappa}^{\mathrm{VP}}(\boldsymbol{x})+\rho_{-\kappa}^{\mathrm{VP}}(\boldsymbol{x})\right]=0 \tag{28}
\end{equation*}
$$

[^8]
Numerical vacuum polarization density

We shall now use RKB and \mathcal{C}-DKB to compute the VP density

$$
\begin{equation*}
\rho_{\kappa}^{\mathrm{VP}}(\boldsymbol{x})=\frac{e|\kappa|}{4 \pi r^{2}} \sum_{i=1}^{n} \operatorname{sgn}\left(E_{i, \kappa}\right)\left[\mathcal{P}_{i, \kappa}^{2}+\mathcal{Q}_{i, \kappa}^{2}\right] \tag{29}
\end{equation*}
$$

where $n=n_{L}+n_{S}$ is the total number of basis functions, $\mathcal{P}_{i, \kappa}, \mathcal{Q}_{i, \kappa}$ are the large and small radial Dirac wavefunctions, associated with the energy-level $E_{i, k}$.

Numerical vacuum polarization density

We shall now use RKB and \mathcal{C}-DKB to compute the VP density

$$
\begin{equation*}
\rho_{\kappa}^{\mathrm{VP}}(\boldsymbol{x})=\frac{e|\kappa|}{4 \pi r^{2}} \sum_{i=1}^{n} \operatorname{sgn}\left(E_{i, \kappa}\right)\left[\mathcal{P}_{i, \kappa}^{2}+\mathcal{Q}_{i, \kappa}^{2}\right], \tag{29}
\end{equation*}
$$

where $n=n_{L}+n_{S}$ is the total number of basis functions, $\mathcal{P}_{i, \kappa}, \mathcal{Q}_{i, \kappa}$ are the large and small radial Dirac wavefunctions, associated with the energy-level $E_{i, k}$.

Qualitative computations

We shall first present RKB and \mathcal{C}-DKB computations, and focus on:
(1) Furry's theorem obedience (in the free problem).
(2) The large distance behavior (in the atomic problem).

Numerical vacuum polarization density

We shall now use RKB and \mathcal{C}-DKB to compute the VP density

$$
\begin{equation*}
\rho_{k}^{\mathrm{VP}}(\boldsymbol{x})=\frac{e|\kappa|}{4 \pi r^{2}} \sum_{i=1}^{n} \operatorname{sgn}\left(E_{i, k}\right)\left[\mathcal{P}_{i, \kappa}^{2}+\mathcal{Q}_{i, k}^{2}\right], \tag{29}
\end{equation*}
$$

where $n=n_{L}+n_{S}$ is the total number of basis functions, $\mathcal{P}_{i, \kappa}, \mathcal{Q}_{i, \kappa}$ are the large and small radial Dirac wavefunctions, associated with the energy-level $E_{i, \kappa}$.

Qualitative computations

We shall first present RKB and \mathcal{C}-DKB computations, and focus on:
(1) Furry's theorem obedience (in the free problem).
(2) The large distance behavior (in the atomic problem).

Quantitative computations

Subtract the VP density that is linear in the nuclear charge (containing the Uehling effect + divergence), and compare our results with the more sophisticated computation.

A sign of \mathcal{C}-symmetry violation: VP density with j-basis

We have done two free $(Z=0)$ calculations using uranium j-basis:

- RKB $\geqq^{\wedge}(\mathcal{C}$-symmetry is violated):

A sign of \mathcal{C}-symmetry violation: VP density with j-basis

We have done two free $(Z=0)$ calculations using uranium j-basis:

- RKB \ (\mathcal{C}-symmetry is violated):

- DKB $\vee(\mathcal{C}$-symmetry is obeyed):

RKB vs \mathcal{C}-DKB: 1e uranium atom at large distances

RKB $₫(\mathcal{C}$-symmetry is violated):

RKB vs \mathcal{C}-DKB: 1e uranium atom at large distances

RKB $₫(\mathcal{C}$-symmetry is violated) :

DKB $\checkmark \quad(\mathcal{C}$-symmetry is obeyed $):$

The linear vacuum polarization is divergent!

The total VP density can be expanded in powers of the external scalar potential $\phi(x)$ as

$$
\begin{equation*}
\rho_{\kappa}^{\mathrm{VP}}(x)=\frac{e|\kappa|}{4 \pi^{2} i} \int_{C_{F}} d z \operatorname{Tr}\left[G_{\kappa}\left(r_{x}, r_{x} ; z\right)\right]=\rho_{\kappa}^{\mathrm{VP}, 0}(x)+\rho_{\kappa}^{\mathrm{VP}, 1}(x)+\rho_{\kappa}^{\mathrm{VP}, 2}(x)+\ldots \tag{30}
\end{equation*}
$$

Furry's theorem

Diagrams with free electron loops with odd number of vertices are discarded.

The linear vacuum polarization is divergent!

The total VP density can be expanded in powers of the external scalar potential $\phi(x)$ as

$$
\begin{equation*}
\rho_{\kappa}^{\mathrm{VP}}(x)=\frac{e|\kappa|}{4 \pi^{2} i} \int_{C_{F}} d z \operatorname{Tr}\left[G_{\kappa}\left(r_{x}, r_{x} ; z\right)\right]=\rho_{\kappa}^{\mathrm{VP}, 0}(x)+\rho_{\kappa}^{\mathrm{VP}, 1}(x)+\rho_{\kappa}^{\mathrm{VP}, 2}(x)+\ldots \tag{30}
\end{equation*}
$$

Furry's theorem

Diagrams with free electron loops with odd number of vertices are discarded.

$\rho_{\kappa}^{\mathrm{VP}, 1}(x)$ (linear in Z) is divergent!

$$
\begin{equation*}
\rho^{\mathrm{VP}, 1}(x)=\int \frac{d^{4} q}{(2 \pi \hbar)^{4}} e^{-\frac{i}{\hbar} q \cdot x} \Pi^{00}(q) \phi(q) \tag{31}
\end{equation*}
$$

The linear vacuum polarization is divergent!

The total VP density can be expanded in powers of the external scalar potential $\phi(x)$ as

$$
\begin{equation*}
\rho_{\kappa}^{\mathrm{VP}}(x)=\frac{e|\kappa|}{4 \pi^{2} i} \int_{C_{F}} d z \operatorname{Tr}\left[G_{\kappa}\left(r_{x}, r_{x} ; z\right)\right]=\rho_{\kappa}^{\mathrm{VP}, 0}(x)+\rho_{\kappa}^{\mathrm{VP}, 1}(x)+\rho_{\kappa}^{\mathrm{VP}, 2}(x)+\ldots \tag{30}
\end{equation*}
$$

Furry's theorem

Diagrams with free electron loops with odd number of vertices are discarded.

$\rho_{\kappa}^{\mathrm{VP}, 1}(x)$ (linear in Z) is divergent!

$$
\begin{equation*}
\rho^{\mathrm{VP}, 1}(x)=\int \frac{d^{4} q}{(2 \pi \hbar)^{4}} e^{-\frac{i}{\hbar} q \cdot x} \Pi^{00}(q) \phi(q) \tag{31}
\end{equation*}
$$

The source of divergence comes from the polarization tensor (photon self-energy)

$$
\begin{equation*}
\Pi^{\mu \nu}(q)=-\frac{i \hbar e^{2}}{c} \int \frac{d^{4} p}{(2 \pi \hbar)^{4}} \operatorname{Tr}\left[\gamma^{\mu} \frac{\not p+m c}{p^{2}-m^{2} c^{2}+i \epsilon} \gamma^{\nu} \frac{\not p-q+m c}{(p-q)^{2}-m^{2} c^{2}+i \epsilon}\right] \sim \Lambda^{2} \tag{32}
\end{equation*}
$$

On the infinite: by David Hilbert

In summary, let us return to our main theme and draw some conclusions from all our thinking about the infinite. Our principal result is that the infinite is nowhere to be found in reality. It neither exists in nature nor provides a legitimate basis for rational thought - a remarkable harmony between being and thought. In contrast to the earlier efforts of Frege and Dedekind, we are convinced that certain intuitive concepts and insights are necessary conditions of scientific knowledge, and logic alone is not sufficient. Operating with the infinite can be made certain only by the finitary.

The role that remains for the infinite to play is solely that of an idea if one means by an idea, in Kant's terminology, a concept of reason which transcends all experience and which completes the concrete as a
 totality - that of an idea which we may unhesitatingly trust within the framework erected by our theory.

Hilbert, D. On the infinite (1984). In P. Benacerraf and H. Putnam (Eds.), Philosophy of Mathematics: Selected Readings (p183-201). Cambridge University Press,/29

Subtracting the linear vacuum polarization

The VP density that is linear in Z is divergent. Rinker and Wilets ${ }^{5}$ suggested to remove the linear part through

$$
\rho_{\kappa}^{n \geq 3}(x ; Z)=\rho_{\kappa}^{\mathrm{VP}}(x ; Z)-\lim _{\delta \rightarrow 0} \frac{Z}{\delta} \rho_{\kappa}^{\mathrm{VP}}(x ; \delta)
$$

[^9]
Subtracting the linear vacuum polarization

The VP density that is linear in Z is divergent. Rinker and Wilets ${ }^{5}$ suggested to remove the linear part through

$$
\rho_{\kappa}^{n \geq 3}(x ; Z)=\rho_{\kappa}^{\mathrm{VP}}(x ; Z)-\lim _{\delta \rightarrow 0} \frac{Z}{\delta} \rho_{\kappa}^{\mathrm{VP}}(x ; \delta)
$$

- Mohr et al. ${ }^{6}$ computed this density for uranium $238(Z=92)$ using exact expressions of the free and atomic Green's function [Wichmann and Kroll], and the shell nuclear model (hollow sphere).

[^10]
Subtracting the linear vacuum polarization

The VP density that is linear in Z is divergent. Rinker and Wilets ${ }^{5}$ suggested to remove the linear part through

$$
\rho_{\kappa}^{n \geq 3}(x ; Z)=\rho_{\kappa}^{\mathrm{VP}}(x ; Z)-\lim _{\delta \rightarrow 0} \frac{Z}{\delta} \rho_{\kappa}^{\mathrm{VP}}(x ; \delta)
$$

- Mohr et al. ${ }^{6}$ computed this density for uranium $238(Z=92)$ using exact expressions of the free and atomic Green's function [Wichmann and Kroll], and the shell nuclear model (hollow sphere).
- We numerically compute this density, with two different nuclear models, and two basis sets respecting the \mathcal{C}-symmetry (\mathcal{C}-DKB):
(1) Point nucleus with:
(1) 16G basis (Dyall $1 \mathrm{~s} 2.7 \mathrm{z}^{7}$).
(2) $30 G$ basis: 30 even-tempered exponents.

[^11]
Subtracting the linear vacuum polarization

The VP density that is linear in Z is divergent. Rinker and Wilets ${ }^{5}$ suggested to remove the linear part through

$$
\rho_{\kappa}^{n \geq 3}(x ; Z)=\rho_{\kappa}^{\mathrm{VP}}(x ; Z)-\lim _{\delta \rightarrow 0} \frac{Z}{\delta} \rho_{\kappa}^{\mathrm{VP}}(x ; \delta)
$$

- Mohr et al. ${ }^{6}$ computed this density for uranium $238(Z=92)$ using exact expressions of the free and atomic Green's function [Wichmann and Kroll], and the shell nuclear model (hollow sphere).
- We numerically compute this density, with two different nuclear models, and two basis sets respecting the \mathcal{C}-symmetry (\mathcal{C}-DKB):
(1) Point nucleus with:
(1) 16G basis (Dyall $1 \mathrm{~s} 2.7 \mathrm{z}^{7}$).
(2) $30 G$ basis: 30 even-tempered exponents.
(2) Shell nucleus with:
(1) 16 G basis.
(2) 30 G basis.

[^12]
Non-linear VP density: \mathcal{C}-DKB + point nucleus +16 G basis

Non-linear vacuum polarization density: $r^{2}\left(\rho_{+\kappa}^{\mathrm{VP}, n}+\rho_{-\kappa}^{\mathrm{VP}, n}\right)$, for $\kappa=1$ and $n \geq 3$

at large distances

Non-linear VP density: \mathcal{C}-DKB + point nucleus +30 G basis

Non-linear vacuum polarization density: $r^{2}\left(\rho_{+\kappa}^{\mathrm{VP}, n}+\rho_{-k}^{\mathrm{VP}, n}\right)$, for $\kappa=1$ and $n \geq 3$

Non-linear VP density: \mathcal{C}-DKB + shell nucleus +16 G basis

Non-linear vacuum polarization density: $r^{2}\left(\rho_{+\kappa}^{\mathrm{VP}, n}+\rho_{-k}^{\mathrm{VP}, n}\right)$, for $\kappa=1$ and $n \geq 3$

Non-linear VP density: \mathcal{C}-DKB + shell nucleus +30 G basis

Non-linear vacuum polarization density: $r^{2}\left(\rho_{+\kappa}^{\mathrm{VP}, n}+\rho_{-k}^{\mathrm{VP}, n}\right)$, for $\kappa=1$ and $n \geq 3$

Non-linear VP density in RKB: Gauss nucleus + 16G

Non-linear vacuum polarization density: $r^{2}\left(\rho_{+k}^{\mathrm{VP}, n}+\rho_{-k}^{\mathrm{VP}, n}\right)$, for $\kappa=1$ and $n \geq 3$

Non-linear VP density in RKB: Gauss nucleus + 16G

Non-linear vacuum polarization density: $r^{2}\left(\rho_{+\kappa}^{\mathrm{VP}, n}+\rho_{-\kappa}^{\mathrm{VP}, n}\right)$, for $\kappa=1$ and $n \geq 3$

Why?

- RKB favors positive- on negative-energy solutions
- RKB violates the \mathcal{C}-symmetry. We thus have:
$\rho_{\kappa}^{\mathrm{VP}, 0}, \rho_{\kappa}^{\mathrm{VP}, 2}, \rho_{\kappa}^{\mathrm{VP}, 4}, \ldots \neq 0$

Vacuum polarization density: $(Z \alpha)$-expansion

The VP density is related to the Dirac-Coulomb Green's function by:

$$
\begin{equation*}
\rho^{\mathrm{VP}}(x)=\frac{e}{4 \pi^{2} i} \sum_{\kappa}|\kappa| \int_{C_{F}} d z \operatorname{Tr}\left[G_{\kappa}\left(r_{x}, r_{x} ; z\right)\right], \tag{33}
\end{equation*}
$$

Vacuum polarization density: $(Z \alpha)$-expansion

The VP density is related to the Dirac-Coulomb Green's function by:

$$
\begin{equation*}
\rho^{\mathrm{VP}}(x)=\frac{e}{4 \pi^{2} i} \sum_{\kappa}|\kappa| \int_{C_{F}} d z \operatorname{Tr}\left[G_{\kappa}\left(r_{x}, r_{x} ; z\right)\right] \tag{33}
\end{equation*}
$$

This Green's function satisfies the following Dirac equation:

$$
\sum_{\kappa}\left[\begin{array}{cc}
+m c^{2}-e \phi\left(r_{x}\right)-z & -\hbar c\left[\frac{\partial}{\partial r_{x}}+\frac{1-\kappa}{r_{x}}\right] \tag{34}\\
\hbar c\left[\frac{\partial}{\partial r_{x}}+\frac{1+\kappa}{r_{x}}\right] & -m c^{2}-e \phi\left(r_{x}\right)-z
\end{array}\right] \quad G_{\kappa}\left(r_{x}, r_{y} ; z\right)=\frac{\delta\left(r_{x}-r_{y}\right)}{r_{x} r_{y}} \mathbb{1}_{2},
$$

and can be written as:

$$
\begin{align*}
& G_{\kappa}\left(r_{x}, r_{y} ; z\right)=\sum_{n} \frac{\psi_{n, \kappa}\left(r_{x}\right) \psi_{n, \kappa}^{\dagger}\left(r_{y}\right)}{E_{n, \kappa}-z}=\sum_{n} \frac{1}{E_{n, \kappa}-z}\left[\begin{array}{lll}
G_{n, \kappa}^{L L}\left(r_{x}, r_{y}\right) & G_{n}^{L S}\left(r_{x}, r_{y}\right) \\
G_{n, \kappa}^{S L}\left(r_{x}, r_{y}\right) & G_{\kappa}^{S S S}\left(r_{x}, r_{y}\right)
\end{array}\right], \tag{35}\\
& G_{n, \kappa}^{\alpha \beta}\left(r_{x}, r_{y}\right)=R_{n, \kappa}^{\alpha}\left(r_{x}\right) R_{n, \kappa}^{\beta}\left(r_{y}\right), \quad \alpha, \beta=L, S . \tag{36}
\end{align*}
$$

Vacuum polarization density: $(Z \alpha)$-expansion

The VP density is related to the Dirac-Coulomb Green's function by:

$$
\begin{equation*}
\rho^{\mathrm{VP}}(x)=\frac{e}{4 \pi^{2} i} \sum_{\kappa}|\kappa| \int_{C_{F}} d z \operatorname{Tr}\left[G_{\kappa}\left(r_{x}, r_{x} ; z\right)\right], \tag{33}
\end{equation*}
$$

This Green's function satisfies the following Dirac equation:

$$
\sum_{\kappa}\left[\begin{array}{cc}
+m c^{2}-e \phi\left(r_{x}\right)-z & -\hbar c\left[\frac{\partial}{\partial r_{x}}+\frac{1-\kappa}{r_{x}}\right] \tag{34}\\
\hbar c\left[\frac{\partial}{\partial r_{x}}+\frac{1+\kappa}{r_{x}}\right] & -m c^{2}-e \phi\left(r_{x}\right)-z
\end{array}\right] \quad G_{\kappa}\left(r_{x}, r_{y} ; z\right)=\frac{\delta\left(r_{x}-r_{y}\right)}{r_{x} r_{y}} \mathbb{1}_{2}
$$

and can be written as:

$$
\begin{align*}
& G_{\kappa}\left(r_{x}, r_{y} ; z\right)=\sum_{n} \frac{\psi_{n, \kappa}\left(r_{x}\right) \psi_{n, \kappa}^{\dagger}\left(r_{y}\right)}{E_{n, \kappa}-z}=\sum_{n} \frac{1}{E_{n, \kappa}-z}\left[\begin{array}{ll}
G_{n, \kappa}^{L L}\left(r_{x}, r_{y}\right) & G_{n, \kappa}^{L S}\left(r_{x}, r_{y}\right) \\
G_{n, \kappa}^{S L}\left(r_{x}, r_{y}\right) & G_{\kappa}^{S S}\left(r_{x}, r_{y}\right)
\end{array}\right], \tag{35}\\
& G_{n, \kappa}^{\alpha \beta}\left(r_{x}, r_{y}\right)=R_{n, \kappa}^{\alpha}\left(r_{x}\right) R_{n, \kappa}^{\beta}\left(r_{y}\right), \quad \alpha, \beta=L, S . \tag{36}
\end{align*}
$$

The total Green's function can be expanded as:

$$
\begin{align*}
& \quad G_{\kappa}\left(r_{x}, r_{y} ; z\right)=G_{\kappa}^{0}\left(r_{x}, r_{y} ; z\right)+e \int_{0}^{\infty} r_{u}^{2} d r_{u} G_{\kappa}^{0}\left(r_{x}, r_{u} ; z\right) \phi\left(r_{u}\right) G_{\kappa}^{0}\left(r_{u}, r_{y} ; z\right) \tag{37}\\
& + \\
& +e^{2} \int_{0}^{\infty} r_{u}^{2} d r_{u} \int_{0}^{\infty} r_{v}^{2} d r_{v} G_{\kappa}^{0}\left(r_{x}, r_{u} ; z\right) \phi\left(r_{u}\right) G_{\kappa}^{0}\left(r_{u}, r_{v} ; z\right) \phi\left(r_{v}\right) G_{\kappa}^{0}\left(r_{v}, r_{y} ; z\right)+\mathcal{O}\left(e^{6}\right),
\end{align*}
$$

where $G_{\kappa}^{0}\left(r_{x}, r_{y} ; z\right)=\lim _{z \rightarrow 0} G_{\kappa}\left(r_{x}, r_{y} ; z\right)$.

VP density: $(Z \alpha)$-expansion

The full vacuum polarization density can be thus written as a sum:

$$
\begin{equation*}
\rho_{\kappa}^{\mathrm{VP}}(x)=\frac{e|\kappa|}{4 \pi^{2} i} \int_{C_{F}} d z \operatorname{Tr}\left[G_{\kappa}\left(r_{x}, r_{x} ; z\right)\right]=\rho_{\kappa}^{\mathrm{VP}, 0}(x)+\rho_{\kappa}^{\mathrm{VP}, 1}(x)+\rho_{\kappa}^{\mathrm{VP}, 2}(x)+\ldots \tag{38}
\end{equation*}
$$

VP density: $(Z \alpha)$-expansion

The full vacuum polarization density can be thus written as a sum:

The associated individual VP densities are given by:

$$
\begin{align*}
& \rho_{\kappa}^{\mathrm{PP}, 0}(x)=\frac{e|\kappa|}{4 \pi^{2} i} \int_{C_{F}} d z \operatorname{Tr}\left[G_{\kappa}^{0}\left(r_{x}, r_{x} ; z\right)\right] \tag{39}\\
& \rho_{\kappa}^{\mathrm{VP}, 1}(x)=\frac{e^{2}|\kappa|}{4 \pi^{2} i} \int_{0}^{\infty} r_{u}^{2} d r_{u} \phi\left(r_{u}\right) \int_{C_{F}} d z \operatorname{Tr}\left[G_{\kappa}^{0}\left(r_{x}, r_{u} ; z\right) G_{\kappa}^{0}\left(r_{u}, r_{x} ; z\right)\right] \tag{40}
\end{align*}
$$

We shall use the numerical free Green's function expression

$$
\begin{equation*}
G_{\kappa}^{0}\left(r_{x}, r_{y} ; z\right)=\sum_{i=1}^{n_{\kappa}} \frac{\varphi_{\kappa, i}\left(r_{x}\right) \varphi_{\kappa, i}^{\dagger}\left(r_{y}\right)}{E_{\kappa, i}-z} \tag{41}
\end{equation*}
$$

to derive the n-potential VP density expression: $\rho_{\kappa}^{\mathrm{VP}, n}$.

$(Z \alpha)^{n}$ VP density in the finite basis

The n-potential VP density:

$$
\begin{align*}
\rho_{\kappa}^{n}(\boldsymbol{x}) & =\frac{e^{n+1}|\kappa|}{4 \pi^{2} i} \int_{0}^{\infty} r_{1}^{2} d r_{1} \phi\left(r_{1}\right) \ldots \int_{0}^{\infty} r_{n}^{2} d r_{n} \phi\left(r_{n}\right) \\
& \times \int_{C_{F}} d z \operatorname{Tr}\left[G_{\kappa}^{0}\left(r_{x}, r_{1} ; z\right) G_{\kappa}^{0}\left(r_{1}, r_{2} ; z\right) \ldots G_{\kappa}^{0}\left(r_{n-1}, r_{n} ; z\right) G_{\kappa}^{0}\left(r_{n}, r_{x} ; z\right)\right] \tag{43}
\end{align*}
$$

can be written as

$$
\begin{align*}
\rho_{\kappa}^{n}(x) & =\frac{e^{n+1}|\kappa|}{4 \pi^{2} r_{x} i} \sum_{\alpha_{\mathbf{1}}, \ldots, \alpha_{n+\mathbf{1}}} s_{\alpha_{n+1} \alpha_{\mathbf{1}}}^{\kappa}\left(r_{x}\right) \tag{44}\\
& \times V_{\alpha_{\mathbf{1}} \alpha_{\mathbf{2}}}^{\kappa} V_{\alpha_{\mathbf{2}} \alpha_{\mathbf{3}}}^{\kappa} \ldots V_{\alpha_{n-\mathbf{1}} \alpha_{n}}^{\kappa} V_{\alpha_{n} \alpha_{n+\mathbf{1}}}^{\kappa} I(n, \kappa)
\end{align*}
$$

$(Z \alpha)^{n}$ VP density in the finite basis

The n-potential VP density:

$$
\begin{align*}
\rho_{\kappa}^{n}(\boldsymbol{x}) & =\frac{e^{n+1}|\kappa|}{4 \pi^{2} i} \int_{0}^{\infty} r_{1}^{2} d r_{1} \phi\left(r_{1}\right) \ldots \int_{0}^{\infty} r_{n}^{2} d r_{n} \phi\left(r_{n}\right) \\
& \times \int_{C_{F}} d z \operatorname{Tr}\left[G_{\kappa}^{0}\left(r_{x}, r_{1} ; z\right) G_{\kappa}^{0}\left(r_{1}, r_{2} ; z\right) \ldots G_{\kappa}^{0}\left(r_{n-1}, r_{n} ; z\right) G_{\kappa}^{0}\left(r_{n}, r_{x} ; z\right)\right] \tag{43}
\end{align*}
$$

can be written as

$$
\begin{align*}
\rho_{\kappa}^{n}(x) & =\frac{e^{n+1}|\kappa|}{4 \pi^{2} r_{x} i} \sum_{\alpha_{\mathbf{1}}, \ldots, \alpha_{n+\mathbf{1}}} s_{\alpha_{n+1} \alpha_{\mathbf{1}}}^{\kappa}\left(r_{x}\right) \tag{44}\\
& \times V_{\alpha_{\mathbf{1}} \alpha_{\mathbf{2}}}^{\kappa} V_{\alpha_{\mathbf{2}} \alpha_{\mathbf{3}}}^{\kappa} \ldots V_{\alpha_{n-\mathbf{1}} \alpha_{n}}^{\kappa} V_{\alpha_{n} \alpha_{n+1}}^{\kappa} I(n, \kappa)
\end{align*}
$$

where $V_{\alpha \beta}^{\kappa}$ and $s_{\beta \alpha}^{\kappa}(r)$ are given by

$$
\begin{align*}
V_{\alpha \beta}^{\kappa} & =\int_{0}^{\infty} d r \phi(r) \varphi_{\alpha, \kappa}^{\dagger}(r) \varphi_{\beta, \kappa}(r) . \tag{45}\\
s_{\beta \alpha}^{\kappa}(r) & =\varphi_{\beta, \kappa}^{\dagger}(r) \varphi_{\alpha, \kappa}(r) . \tag{46}
\end{align*}
$$

$(Z \alpha)^{n}$ VP density in the finite basis

The n-potential VP density:

$$
\begin{align*}
\rho_{\kappa}^{n}(\boldsymbol{x}) & =\frac{e^{n+1}|\kappa|}{4 \pi^{2} i} \int_{0}^{\infty} r_{1}^{2} d r_{1} \phi\left(r_{1}\right) \ldots \int_{0}^{\infty} r_{n}^{2} d r_{n} \phi\left(r_{n}\right) \\
& \times \int_{C_{F}} d z \operatorname{Tr}\left[G_{\kappa}^{0}\left(r_{x}, r_{1} ; z\right) G_{\kappa}^{0}\left(r_{1}, r_{2} ; z\right) \ldots G_{\kappa}^{0}\left(r_{n-1}, r_{n} ; z\right) G_{\kappa}^{0}\left(r_{n}, r_{x} ; z\right)\right] \tag{43}
\end{align*}
$$

can be written as

$$
\begin{align*}
\rho_{\kappa}^{n}(x) & =\frac{e^{n+1}|\kappa|}{4 \pi^{2} r_{x} i} \sum_{\alpha_{\mathbf{1}}, \ldots, \alpha_{n+\mathbf{1}}} s_{\alpha_{n+1} \alpha_{\mathbf{1}}}^{\kappa}\left(r_{x}\right) \tag{44}\\
& \times V_{\alpha_{\mathbf{1}} \alpha_{\mathbf{2}}}^{\kappa} V_{\alpha_{\mathbf{2}} \alpha_{\mathbf{3}}}^{\kappa} \ldots V_{\alpha_{n-\mathbf{1}} \alpha_{n}}^{\kappa} V_{\alpha_{n} \alpha_{n+\mathbf{1}}}^{\kappa} I(n, \kappa)
\end{align*}
$$

where $V_{\alpha \beta}^{\kappa}$ and $s_{\beta \alpha}^{\kappa}(r)$ are given by

$$
\begin{align*}
V_{\alpha \beta}^{\kappa} & =\int_{0}^{\infty} d r \phi(r) \varphi_{\alpha, \kappa}^{\dagger}(r) \varphi_{\beta, \kappa}(r) . \tag{45}\\
s_{\beta \alpha}^{\kappa}(r) & =\varphi_{\beta, \kappa}^{\dagger}(r) \varphi_{\alpha, \kappa}(r) . \tag{46}
\end{align*}
$$

We are thus left with the evaluation of the contour integral

$$
\begin{equation*}
I(n, \kappa)=\int_{C_{F}} d z \frac{1}{E_{\alpha_{1}, \kappa}-z} \cdots \frac{1}{E_{\alpha_{n+1}, \kappa}-z}=? \tag{47}
\end{equation*}
$$

$(Z \alpha)^{n}$ VP density in the finite basis

The n-potential VP density:

$$
\begin{align*}
\rho_{\kappa}^{n}(\boldsymbol{x}) & =\frac{e^{n+1}|\kappa|}{4 \pi^{2} i} \int_{0}^{\infty} r_{1}^{2} d r_{1} \phi\left(r_{1}\right) \ldots \int_{0}^{\infty} r_{n}^{2} d r_{n} \phi\left(r_{n}\right) \\
& \times \int_{C_{F}} d z \operatorname{Tr}\left[G_{\kappa}^{0}\left(r_{x}, r_{1} ; z\right) G_{\kappa}^{0}\left(r_{1}, r_{2} ; z\right) \ldots G_{\kappa}^{0}\left(r_{n-1}, r_{n} ; z\right) G_{\kappa}^{0}\left(r_{n}, r_{x} ; z\right)\right] \tag{43}
\end{align*}
$$

can be written as

$$
\begin{align*}
\rho_{\kappa}^{n}(x) & =\frac{e^{n+1}|\kappa|}{4 \pi^{2} r_{x} i} \sum_{\alpha_{\mathbf{1}}, \ldots, \alpha_{n+\mathbf{1}}} s_{\alpha_{n+1} \alpha_{\mathbf{1}}}^{\kappa}\left(r_{x}\right) \tag{44}\\
& \times V_{\alpha_{\mathbf{1}} \alpha_{\mathbf{2}}}^{\kappa} V_{\alpha_{\mathbf{2}} \alpha_{\mathbf{3}}}^{\kappa} \ldots V_{\alpha_{n-\mathbf{1}} \alpha_{n}}^{\kappa} V_{\alpha_{n} \alpha_{n+1}}^{\kappa} I(n, \kappa)
\end{align*}
$$

where $V_{\alpha \beta}^{\kappa}$ and $s_{\beta \alpha}^{\kappa}(r)$ are given by

$$
\begin{align*}
V_{\alpha \beta}^{\kappa} & =\int_{0}^{\infty} d r \phi(r) \varphi_{\alpha, \kappa}^{\dagger}(r) \varphi_{\beta, \kappa}(r) . \tag{45}\\
s_{\beta \alpha}^{\kappa}(r) & =\varphi_{\beta, \kappa}^{\dagger}(r) \varphi_{\alpha, \kappa}(r) . \tag{46}
\end{align*}
$$

We are thus left with the evaluation of the contour integral

$$
\begin{equation*}
I(n, \kappa)=\int_{C_{F}} d z \frac{1}{E_{\alpha_{1}, \kappa}-z} \cdots \frac{1}{E_{\alpha_{n+1}, \kappa}-z}=? \tag{47}
\end{equation*}
$$

$\left\{\varphi_{\alpha, \kappa}(r), E_{\alpha, \kappa}\right\}$ are the eigensolutions of the free radial Dirac equation.

$(Z \alpha)^{n}$ VP density contour integral

The remaining contour integral is given by

$$
\begin{equation*}
I(n, \kappa)=\int_{C_{F}} d z \frac{1}{E_{\alpha_{1}, \kappa}-z} \cdots \frac{1}{E_{\alpha_{n+1}, \kappa}-z}=? \tag{48}
\end{equation*}
$$

Figure: Dirac eigenvalues (black dots), and Feynman contour (C_{F} : red path).

$(Z \alpha)^{n}$ VP density contour integral

The remaining contour integral is given by

$$
\begin{equation*}
I(n, \kappa)=\int_{C_{F}} d z \frac{1}{E_{\alpha_{1}, \kappa}-z} \cdots \frac{1}{E_{\alpha_{n+1}, \kappa}-z}=? \tag{48}
\end{equation*}
$$

Figure: Dirac eigenvalues (black dots), and Feynman contour (C_{F} : red path).

After a lengthy calculation, we find

$$
\int_{C_{F}} d z \frac{1}{E_{1}-z} \cdots \frac{1}{E_{n+1}-z}=\frac{(-1)^{n} i \pi \sum_{i=1}^{n+1}(-1)^{i+1} \operatorname{sgn}\left(E_{i}\right) \prod_{j \neq i} \prod_{k>j, k \neq i}\left(E_{j}-E_{k}\right)}{\prod_{i=1}^{n} \prod_{m>1}\left(E_{I}-E_{m}\right)}
$$

$(Z \alpha)^{n}$ VP density contour integral

The remaining contour integral is given by

$$
\begin{equation*}
I(n, \kappa)=\int_{C_{F}} d z \frac{1}{E_{\alpha_{1}, \kappa}-z} \cdots \frac{1}{E_{\alpha_{n+1}, \kappa}-z}=? \tag{48}
\end{equation*}
$$

Figure: Dirac eigenvalues (black dots), and Feynman contour (C_{F} : red path).

After a lengthy calculation, we find

$$
\int_{C_{F}} d z \frac{1}{E_{1}-z} \cdots \frac{1}{E_{n+1}-z}=\frac{(-1)^{n} i \pi \sum_{i=1}^{n+1}(-1)^{i+1} \operatorname{sgn}\left(E_{i}\right) \prod_{j \neq i} \prod_{k>j, k \neq i}\left(E_{j}-E_{k}\right)}{\prod_{l=1}^{n} \prod_{m>1}\left(E_{l}-E_{m}\right)}
$$

We now have the exact expression of the $(Z \alpha)^{n}$ VP density!

Furry's theorem in the \mathcal{C}-symmetric finite basis

The n-potential VP densities associated with $\pm \kappa$ are:

$$
\begin{align*}
& \rho_{+\kappa}^{n}(x)=\frac{e^{n+1}|\kappa|}{4 \pi^{2} r_{x} i} \sum_{\alpha_{\mathbf{1}}, \ldots, \alpha_{n+1}} s_{\alpha_{n+1}, \alpha_{\mathbf{1}}}^{+\kappa}\left(r_{x}\right) V_{\alpha_{\mathbf{1}} \alpha_{\mathbf{2}}}^{+\kappa} \ldots V_{\alpha_{n} \alpha_{n+1}}^{+\kappa} I(n,+\kappa) \tag{49}\\
& \rho_{-\kappa}^{n}(x)=\frac{e^{n+1}|\kappa|}{4 \pi^{2} r_{x} i} \sum_{\alpha_{\mathbf{1}}, \ldots, \alpha_{n+1}} s_{\alpha_{n+1}, \alpha_{\mathbf{1}}}^{-\kappa}\left(r_{x}\right) V_{\alpha_{\mathbf{1}} \alpha_{\mathbf{2}}}^{-\kappa} \ldots V_{\alpha_{n} \alpha_{n+1}}^{-\kappa} I(n,-\kappa) \tag{50}
\end{align*}
$$

${ }^{8}$ Furry, Wendell H. "A symmetry theorem in the positron theory." Phys. Rev. 51.2 (1937): 125.

Furry's theorem in the C-symmetric finite basis

The n-potential VP densities associated with $\pm \kappa$ are:

$$
\begin{align*}
& \rho_{+\kappa}^{n}(x)=\frac{e^{n+1}|\kappa|}{4 \pi^{2} r_{x} i} \sum_{\alpha_{\mathbf{1}}, \ldots, \alpha_{n+1}} s_{\alpha_{n+1}, \alpha_{1}}^{+\kappa}\left(r_{x}\right) V_{\alpha_{\mathbf{1}} \alpha_{\mathbf{2}}}^{+\kappa} \ldots V_{\alpha_{n} \alpha_{n+1}}^{+\kappa} I(n,+\kappa) \tag{49}\\
& \rho_{-\kappa}^{n}(\boldsymbol{x})=\frac{e^{n+1}|\kappa|}{4 \pi^{2} r_{x} i} \sum_{\alpha_{\mathbf{1}}, \ldots, \alpha_{n+1}} s_{\alpha_{n+\mathbf{1}}, \alpha_{1}}^{-\kappa}\left(r_{x}\right) V_{\alpha_{\mathbf{1}} \alpha_{\mathbf{2}}}^{-\kappa} \ldots V_{\alpha_{n} \alpha_{n+1}}^{-\kappa} I(n,-\kappa) \tag{50}
\end{align*}
$$

If the basis is \mathcal{C}-symmetric, then: $\left\{\begin{array}{ll}E_{\alpha,-\kappa} & =-E_{\alpha,+\kappa} \\ \varphi_{\alpha,-\kappa}(r) & =\sigma_{1} \varphi_{\alpha, \kappa}(r)\end{array}\right.$, and:

$$
\begin{equation*}
V_{\alpha_{1} \alpha_{2}}^{-\kappa}=V_{\alpha_{1} \alpha_{2}}^{+\kappa}, \quad s_{\alpha_{n+1}, \alpha_{1}}^{-\kappa}\left(r_{x}\right)=s_{\alpha_{n+1}, \alpha_{1}}^{+\kappa}\left(r_{x}\right), \quad I(n,-\kappa)=(-1)^{n+1} I(n,+\kappa) \tag{51}
\end{equation*}
$$

${ }^{8}$ Furry, Wendell H. "A symmetry theorem in the positron theory." Phys. Rev. 51.2 (1937): 125.

Furry's theorem in the C-symmetric finite basis

The n-potential VP densities associated with $\pm \kappa$ are:

$$
\begin{align*}
& \rho_{+\kappa}^{n}(x)=\frac{e^{n+1}|\kappa|}{4 \pi^{2} r_{x} i} \sum_{\alpha_{\mathbf{1}}, \ldots, \alpha_{n+1}} s_{\alpha_{n+1}, \alpha_{1}}^{+\kappa}\left(r_{x}\right) V_{\alpha_{1} \alpha_{2}}^{+\kappa} \ldots V_{\alpha_{n} \alpha_{n+1}}^{+\kappa} I(n,+\kappa) \tag{49}\\
& \rho_{-\kappa}^{n}(x)=\frac{e^{n+1}|\kappa|}{4 \pi^{2} r_{x} i} \sum_{\alpha_{\mathbf{1}}, \ldots, \alpha_{n+1}} s_{\alpha_{n+1}, \alpha_{1}}^{-\kappa}\left(r_{x}\right) V_{\alpha_{\mathbf{1}} \alpha_{2}}^{-\kappa} \ldots V_{\alpha_{n} \alpha_{n+1}}^{-\kappa} I(n,-\kappa) \tag{50}
\end{align*}
$$

If the basis is \mathcal{C}-symmetric, then: $\left\{\begin{array}{ll}E_{\alpha,-\kappa} & =-E_{\alpha,+\kappa} \\ \varphi_{\alpha,-\kappa}(r) & =\sigma_{1} \varphi_{\alpha, \kappa}(r)\end{array}\right.$, and:

$$
\begin{equation*}
V_{\alpha_{1} \alpha_{2}}^{-\kappa}=V_{\alpha_{1} \alpha_{2}}^{+\kappa}, \quad s_{\alpha_{n+1}, \alpha_{1}}^{-\kappa}\left(r_{x}\right)=s_{\alpha_{n+1}, \alpha_{1}}^{+\kappa}\left(r_{x}\right), \quad I(n,-\kappa)=(-1)^{n+1} I(n,+\kappa) \tag{51}
\end{equation*}
$$

These results lead to obedience of the Furry theorem ${ }^{8}$:

$$
\rho_{\kappa}^{n}(x)+\rho_{-\kappa}^{n}(x)= \begin{cases}2 \rho_{\kappa}^{n}(x) & \text { for odd } n \tag{52}\\ 0 & \text { for even } n\end{cases}
$$

[^13]
Furry's theorem in the \mathcal{C}-symmetric finite basis

The n-potential VP densities associated with $\pm \kappa$ are:

$$
\begin{align*}
& \rho_{+\kappa}^{n}(x)=\frac{e^{n+1}|\kappa|}{4 \pi^{2} r_{x} i} \sum_{\alpha_{\mathbf{1}}, \ldots, \alpha_{n+1}} s_{\alpha_{n+1}, \alpha_{1}}^{+\kappa}\left(r_{x}\right) V_{\alpha_{1} \alpha_{\mathbf{2}}}^{+\kappa} \ldots V_{\alpha_{n} \alpha_{n+1}}^{+\kappa} I(n,+\kappa) \tag{49}\\
& \rho_{-\kappa}^{n}(x)=\frac{e^{n+1}|\kappa|}{4 \pi^{2} r_{x} i} \sum_{\alpha_{\mathbf{1}}, \ldots, \alpha_{n+1}} s_{\alpha_{n+1}, \alpha_{1}}^{-\kappa}\left(r_{x}\right) V_{\alpha_{1} \alpha_{2}}^{-\kappa} \ldots V_{\alpha_{n} \alpha_{n+1}}^{-\kappa} I(n,-\kappa) \tag{50}
\end{align*}
$$

If the basis is \mathcal{C}-symmetric, then: $\left\{\begin{array}{ll}E_{\alpha,-\kappa} & =-E_{\alpha,+\kappa} \\ \varphi_{\alpha,-\kappa}(r) & =\sigma_{1} \varphi_{\alpha, \kappa}(r)\end{array}\right.$, and:

$$
\begin{equation*}
V_{\alpha_{1} \alpha_{2}}^{-\kappa}=V_{\alpha_{1} \alpha_{2}}^{+\kappa}, \quad s_{\alpha_{n+1}, \alpha_{1}}^{-\kappa}\left(r_{x}\right)=s_{\alpha_{n+1}, \alpha_{1}}^{+\kappa}\left(r_{x}\right), \quad I(n,-\kappa)=(-1)^{n+1} I(n,+\kappa) \tag{51}
\end{equation*}
$$

These results lead to obedience of the Furry theorem ${ }^{8}$:

$$
\rho_{\kappa}^{n}(x)+\rho_{-\kappa}^{n}(x)= \begin{cases}2 \rho_{\kappa}^{n}(x) & \text { for odd } n \tag{52}\\ 0 & \text { for even } n\end{cases}
$$

Two things to know:
(1) In a \mathcal{C}-symmetric basis, even orders of VP density vanish (as in reality).
(2) One needs to calculate one κ sign VP density.

[^14]
Conclusions

(1) Kinetic balances and \mathcal{C}-symmetry:
(1) RKB can be made \mathcal{C}-symmetric using free-particle solutions as a basis for Coulombic problems.

Conclusions

(1) Kinetic balances and \mathcal{C}-symmetry:
(1) RKB can be made \mathcal{C}-symmetric using free-particle solutions as a basis for Coulombic problems.
(1) DKB can be made \mathcal{C}-symmetric without being constrained to a particular type of basis functions.

Conclusions

(1) Kinetic balances and \mathcal{C}-symmetry:
(1) RKB can be made \mathcal{C}-symmetric using free-particle solutions as a basis for Coulombic problems.
(1) DKB can be made \mathcal{C}-symmetric without being constrained to a particular type of basis functions.
(2) The use of non- \mathcal{C}-symmetric basis yields non-physical VP results.

Conclusions

(1) Kinetic balances and \mathcal{C}-symmetry:
(1) RKB can be made \mathcal{C}-symmetric using free-particle solutions as a basis for Coulombic problems.
(1) DKB can be made \mathcal{C}-symmetric without being constrained to a particular type of basis functions.
(2) The use of non- \mathcal{C}-symmetric basis yields non-physical VP results.
(1) The use of a \mathcal{C}-symmetric basis leads to a VP density that is
(1) In line with Furry's theorem
(2) Vanishing at relatively shorter distances
(3) In good agreement with the complicated many-potential (WK) density

Perspectives

Next goals

(1) Compute individual odd-order VP densities $\rho_{\kappa}^{n}(\boldsymbol{x})$ using freshly derived results and check their convergence to the total $\rho^{\mathrm{VP}}(x)$ (ongoing).
(2) Compute hydrogenic energy-shifts associated with the VP process (ongoing).
(3) Solve the self-consistent VP problem.

Perspectives

Next goals

(1) Compute individual odd-order VP densities $\rho_{\kappa}^{n}(\boldsymbol{x})$ using freshly derived results and check their convergence to the total $\rho^{\mathrm{VP}}(x)$ (ongoing).
(2) Compute hydrogenic energy-shifts associated with the VP process (ongoing).
(3) Solve the self-consistent VP problem.

Near future goals

(1) Extend this approach to the complicated (non-local) self-energy problem: design a numerical regularization/renormalization scheme (ongoing project).
(2) Include the basis-computed e^{2}-order VP and SE corrections in the simplest many-body approximation (Hartree-Fock).

Perspectives

Next goals

(1) Compute individual odd-order VP densities $\rho_{\kappa}^{n}(\boldsymbol{x})$ using freshly derived results and check their convergence to the total $\rho^{\mathrm{VP}}(x)$ (ongoing).
(2) Compute hydrogenic energy-shifts associated with the VP process (ongoing).
(3) Solve the self-consistent VP problem.

Near future goals

(1) Extend this approach to the complicated (non-local) self-energy problem: design a numerical regularization/renormalization scheme (ongoing project).
(2) Include the basis-computed e^{2}-order VP and SE corrections in the simplest many-body approximation (Hartree-Fock).

Far future goals

(1) Extend our machinery to more sophisticated (correlated) methods.
(2) Extend the basis-set-computed $e^{2} \mathrm{VP}$ and SE to e^{n}-orders with $n>2$.

Renormalization

Q: How to get rid of your divergences?

Renormalization

Q: How to get rid of your divergences?
A: As you do with dust:

Renormalization

Q: How to get rid of your divergences?
A: As you do with dust:
(1) Swipe it under the rug (rug $=$ bare physics).

Renormalization

Q: How to get rid of your divergences?
A: As you do with dust:
(1) Swipe it under the rug (rug = bare physics).
(2) Define the whole system as your new rug (observed physics).

Renormalization

Q: How to get rid of your divergences?
A: As you do with dust:
(1) Swipe it under the rug (rug $=$ bare physics).
(2) Define the whole system as your new rug (observed physics).

(3) Make Dirac angry

Hence most physicists are very satisfied with the situation. They say: "Quantum electrodynamics is a good theory, and we do not have to worry about it any more." I must say that I am very dissatisfied with the situation, because this so-called "good theory" does involve neglecting infinities which appear in its equations, neglecting them in an arbitrary way. This is just not sensible mathematics. Sensible mathematics involves neglecting a quantity when it turns out to be small-not neglecting it just because it is infinitely great and you do not want it!

Dirac, P. A. M. "Directions in physics. Lectures delivered during a visit to Australia and New Zealand, August/September 1975." (1978).

B1: Gaussian bases with RKB

The spherical Gaussian basis functions are:

$$
\begin{align*}
& \pi_{\kappa, i}^{L}=r^{\left|\kappa+\frac{1}{2}\right|+\frac{1}{2}} e^{-\zeta_{\kappa, i}^{L} r^{2}} \tag{53}\\
& \pi_{\kappa, i}^{S}=\frac{\hbar}{2 m c}\left[\frac{d}{d r}+\frac{\kappa}{r}\right] \pi_{\kappa, i}^{L} \tag{54}
\end{align*}
$$

- ℓ-basis: Same exponents for same ℓ-functions.
- j-basis: Same exponents for same j-functions.

	κ	ℓ-basis	j-basis
$s_{\frac{1}{2}}$	-1	\bullet	\bullet
$p_{\frac{1}{2}}$	+1	\bullet	\bullet
$p_{\frac{3}{2}}$	-2	\bullet	\bullet
$d_{\frac{3}{2}}$	+2	\bullet	\bullet
$d_{\frac{5}{2}}$	-3	\bullet	\bullet
\vdots	\vdots	\vdots	\vdots

Table: Same color means same list of exponents

B1: Gaussian bases with DKB

The spherical Gaussian basis functions are:

$$
\begin{align*}
& \pi_{\kappa, i}^{L}=r^{\left|\kappa+\frac{1}{2}\right|+\frac{1}{2}} e^{-\zeta_{\kappa, i}^{L} r^{2}} \tag{55}\\
& \pi_{\kappa, i}^{S}=r^{\left|\kappa-\frac{1}{2}\right|+\frac{1}{2}} e^{-\zeta_{\kappa, i}^{S} r^{2}} \tag{56}
\end{align*}
$$

κ	ℓ	j	ζ^{L}	ζ^{S}
-1	0	$\frac{1}{2}$	\bullet	\bullet
+1	1	$\frac{1}{2}$	\bullet	\bullet
-2	1	$\frac{3}{2}$	\bullet	\bullet
+2	2	$\frac{3}{2}$	\bullet	\bullet
-3	2	$\frac{5}{2}$	\bullet	\bullet
\vdots			\vdots	\vdots

(a) Exponents in \mathcal{C}-DKB

κ	ℓ	j	ζ^{L}	ζ^{S}
-1	0	$\frac{1}{2}$	\bullet	\bullet
+1	1	$\frac{1}{2}$	\bullet	\bullet
-2	1	$\frac{3}{2}$	\bullet	\bullet
+2	2	$\frac{3}{2}$	\bullet	\bullet
-3	2	$\frac{5}{2}$	\bullet	\bullet
\vdots			\vdots	\vdots

(b) Exponents in ℓ-bases

κ	ℓ	j	ζ^{L}	ζ^{S}
-1	0	$\frac{1}{2}$	\bullet	\bullet
+1	1	$\frac{1}{2}$	\bullet	\bullet
-2	1	$\frac{3}{2}$	\bullet	\bullet
+2	2	$\frac{3}{2}$	\bullet	\bullet
-3	2	$\frac{5}{2}$	\bullet	\bullet
\vdots			\vdots	\vdots

(c) Exponents in j-bases

B2: Uranium exponents

i	$16 \mathrm{G}(7 \mathrm{z}$ basis $)$
1	$5.66530865 \mathrm{E}+07$
2	$1.50715339 \mathrm{E}+07$
3	$5.14926020 \mathrm{E}+06$
4	$1.95346438 \mathrm{E}+06$
5	$8.11107677 \mathrm{E}+05$
6	$3.55863972 \mathrm{E}+05$
7	$1.63626745 \mathrm{E}+05$
8	$7.76952979 \mathrm{E}+04$
9	$3.78943130 \mathrm{E}+04$
10	$1.88681659 \mathrm{E}+04$
11	$9.56625072 \mathrm{E}+03$
12	$4.92635288 \mathrm{E}+03$
13	$2.57221011 \mathrm{E}+03$
14	$1.35785927 \mathrm{E}+03$
15	$7.19791611 \mathrm{E}+02$
16	$3.73653024 \mathrm{E}+02$

i	30 G	\vdots	\vdots
1	$5.6653086 \mathrm{E}+07$	16	$1.1844662 \mathrm{E}+05$
2	$3.7547139 \mathrm{E}+07$	17	$7.8501137 \mathrm{E}+04$
3	$2.4884569 \mathrm{E}+07$	18	$5.2027052 \mathrm{E}+04$
4	$1.6492382 \mathrm{E}+07$	19	$3.4481210 \mathrm{E}+04$
5	$1.0930415 \mathrm{E}+07$	20	$2.2852608 \mathrm{E}+04$
6	$7.2441918 \mathrm{E}+06$	21	$1.5145689 \mathrm{E}+01$
7	$4.8011272 \mathrm{E}+06$	22	$1.0037887 \mathrm{E}+04$
8	$3.1819730 \mathrm{E}+06$	23	$6.6526640 \mathrm{E}+03$
9	$2.1088698 \mathrm{E}+06$	24	$4.4090890 \mathrm{E}+03$
10	$1.3976648 \mathrm{E}+06$	25	$2.9221475 \mathrm{E}+03$
11	$9.2630991 \mathrm{E}+05$	26	$1.9366690 \mathrm{E}+03$
12	$6.1391689 \mathrm{E}+05$	27	$1.2835379 \mathrm{E}+03$
13	$4.0687673 \mathrm{E}+05$	28	$8.5067164 \mathrm{E}+02$
14	$2.6965975 \mathrm{E}+05$	29	$5.6378722 \mathrm{E}+02$
15	$1.7871846 \mathrm{E}+05$	30	$3.7365302 \mathrm{E}+02$

B3: Kinetic balances

The radial Dirac equation can be written as:

$$
\begin{align*}
Q_{n, \kappa} & =\frac{\hbar}{m c} \frac{1}{1+\frac{e \varphi+E_{n, \kappa}}{m c^{2}}}\left[\frac{d}{d r}+\frac{\kappa}{r}\right] P_{n, \kappa} \tag{57}\\
P_{n, \kappa} & =\frac{\hbar}{m c} \frac{1}{1-\frac{e \varphi+E_{n, \kappa}}{m c^{2}}}\left[\frac{d}{d r}-\frac{\kappa}{r}\right] Q_{n, \kappa} . \tag{58}
\end{align*}
$$

B3: Kinetic balances

The radial Dirac equation can be written as:

$$
\begin{align*}
Q_{n, \kappa} & =\frac{\hbar}{m c} \frac{1}{1+\frac{e \varphi+E_{n, \kappa}}{m c^{2}}}\left[\frac{d}{d r}+\frac{\kappa}{r}\right] P_{n, \kappa} \tag{57}\\
P_{n, \kappa} & =\frac{\hbar}{m c} \frac{1}{1-\frac{e \varphi+E_{n, \kappa}}{m c^{2}}}\left[\frac{d}{d r}-\frac{\kappa}{r}\right] Q_{n, \kappa} . \tag{58}
\end{align*}
$$

Atomic Balance (AB):

$$
Q_{\kappa}^{\mathrm{AB}}=\frac{c \hbar}{2 m c^{2}+e \varphi}\left[\frac{d}{d r}+\frac{\kappa}{r}\right] P_{\kappa}
$$

B3: Kinetic balances

The radial Dirac equation can be written as:

$$
\begin{align*}
Q_{n, \kappa} & =\frac{\hbar}{m c} \frac{1}{1+\frac{e \varphi+E_{n, \kappa}}{m c^{2}}}\left[\frac{d}{d r}+\frac{\kappa}{r}\right] P_{n, \kappa} \tag{57}\\
P_{n, \kappa} & =\frac{\hbar}{m c} \frac{1}{1-\frac{e \varphi+E_{n, \kappa}}{m c^{2}}}\left[\frac{d}{d r}-\frac{\kappa}{r}\right] Q_{n, \kappa} . \tag{58}
\end{align*}
$$

Atomic Balance (AB):

$$
Q_{\kappa}^{\mathrm{AB}}=\frac{c \hbar}{2 m c^{2}+e \varphi}\left[\frac{d}{d r}+\frac{\kappa}{r}\right] P_{\kappa}
$$

Restricted Kinetic Balance (RKB): $Q_{\kappa}^{\mathrm{RKB}}=\frac{\hbar}{2 m c}\left[\frac{d}{d r}+\frac{\kappa}{r}\right] P_{\kappa}$

B3: Kinetic balances

The radial Dirac equation can be written as:

$$
\begin{align*}
Q_{n, \kappa} & =\frac{\hbar}{m c} \frac{1}{1+\frac{e \varphi+E_{n, \kappa}}{m c^{2}}}\left[\frac{d}{d r}+\frac{\kappa}{r}\right] P_{n, \kappa} \tag{57}\\
P_{n, \kappa} & =\frac{\hbar}{m c} \frac{1}{1-\frac{e \varphi+E_{n, \kappa}}{m c^{2}}}\left[\frac{d}{d r}-\frac{\kappa}{r}\right] Q_{n, \kappa} . \tag{58}
\end{align*}
$$

Atomic Balance (AB):
$Q_{\kappa}^{\mathrm{AB}}=\frac{c \hbar}{2 m c^{2}+e \varphi}\left[\frac{d}{d r}+\frac{\kappa}{r}\right] P_{\kappa}$
Restricted Kinetic Balance (RKB):
$Q_{\kappa}^{\text {RKB }}=\frac{\hbar}{2 m c}\left[\frac{d}{d r}+\frac{\kappa}{r}\right] P_{\kappa}$

Figure: $A B$ and RKB approxs of the 1 e radon ground state small component.

B3: Kinetic balances

The radial Dirac equation can be written as:

$$
\begin{align*}
Q_{n, \kappa} & =\frac{\hbar}{m c} \frac{1}{1+\frac{e \varphi+E_{n, \kappa}}{m c^{2}}}\left[\frac{d}{d r}+\frac{\kappa}{r}\right] P_{n, \kappa} \tag{57}\\
P_{n, \kappa} & =\frac{\hbar}{m c} \frac{1}{1-\frac{e \varphi+E_{n, \kappa}}{m c^{2}}}\left[\frac{d}{d r}-\frac{\kappa}{r}\right] Q_{n, \kappa} . \tag{58}
\end{align*}
$$

Figure: $A B$ and RKB approxs of the $1 e$ radon ground state small component.

Atomic Balance (AB):
$Q_{\kappa}^{\mathrm{AB}}=\frac{c \hbar}{2 m c^{2}+e \varphi}\left[\frac{d}{d r}+\frac{\kappa}{r}\right] P_{\kappa}$
Restricted Kinetic Balance (RKB):
$\overline{Q_{\kappa}^{\text {RKB }}=\frac{\hbar}{2 m c}\left[\frac{d}{d r}+\frac{\kappa}{r}\right] P_{\kappa}, ~}$
Inverse Kinetic Balance (IKB):
$\overline{P_{n, \kappa}^{\mathrm{IKB}}}=\frac{\hbar}{2 m c}\left[\frac{d}{d r}-\frac{\kappa}{r}\right] Q_{n, \kappa}$

B4: Vacuum polarization density: (αZ)-expansion

The VP density is related to the Dirac-Coulomb Green's function by:

$$
\begin{equation*}
\rho^{\mathrm{VP}}(\boldsymbol{x})=\frac{e}{4 \pi^{2} i} \sum_{\kappa}|\kappa| \int_{C_{F}} d z \operatorname{Tr}\left[G_{\kappa}\left(r_{x}, r_{x} ; z\right)\right] \tag{59}
\end{equation*}
$$

This Green's function satisfies the following Dirac equation:

$$
\sum_{\kappa}\left[\begin{array}{cc}
+m c^{2}-e \phi\left(r_{x}\right)-z & -\hbar c\left[\frac{\partial}{\partial r_{x}}+\frac{1-\kappa}{r_{x}}\right] \tag{60}\\
\hbar c\left[\frac{\partial}{\partial r_{x}}+\frac{1+\kappa}{r_{x}}\right] & -m c^{2}-e \phi\left(r_{x}\right)-z
\end{array}\right] \quad G_{\kappa}\left(r_{x}, r_{y} ; z\right)=\frac{\delta\left(r_{x}-r_{y}\right)}{r_{x} r_{y}} \mathbb{1}_{2}
$$

and can be written as:

$$
G_{\kappa}\left(r_{x}, r_{y} ; z\right)=\sum_{n} \frac{\psi_{n, \kappa}\left(r_{x}\right) \psi_{n, \kappa}^{\dagger}\left(r_{y}\right)}{E_{n, \kappa}-z}
$$

Using the well-known identity:

$$
\begin{equation*}
\frac{1}{A-B}=\frac{1}{A}+\frac{1}{A} B \frac{1}{A}+\frac{1}{A} B \frac{1}{A} B \frac{1}{A}+\ldots \tag{61}
\end{equation*}
$$

the total Green's function can be expanded as:

$$
\begin{equation*}
G_{\kappa}=G_{\kappa}^{0}+G_{\kappa}^{0} e \phi G_{\kappa}^{0} \quad+\ldots \tag{62}
\end{equation*}
$$

We shall now plug this result in the first equation.

B5: VP density: (αZ)-expansion in the finite basis problem

The full vacuum polarization density can be thus written as a sum:

$$
\begin{equation*}
\rho_{\kappa}^{\mathrm{VP}}(x)=\frac{e|\kappa|}{4 \pi^{2} i} \int_{C_{F}} d z \operatorname{Tr}\left[G_{\kappa}\left(r_{x}, r_{x} ; z\right)\right]=\rho_{\kappa}^{\mathrm{VP}, 0}(x)+\rho_{\kappa}^{\mathrm{VP}, 1}(x)+\rho_{\kappa}^{\mathrm{VP}, 2}(x)+\ldots \tag{63}
\end{equation*}
$$

Individual VP densities are given by:

$$
\begin{align*}
& \rho_{\kappa}^{\mathrm{VP}, 0}(x)=\frac{e|\kappa|}{4 \pi^{2} i} \int_{C_{F}} d z \operatorname{Tr}\left[G_{\kappa}^{0}\left(r_{x}, r_{x} ; z\right)\right] \tag{64}\\
& \rho_{\kappa}^{\mathrm{VP}, 1}(x)=\frac{e^{2}|\kappa|}{4 \pi^{2} i} \int_{0}^{\infty} r_{u}^{2} d r_{u} \phi\left(r_{u}\right) \int_{C_{F}} d z \operatorname{Tr}\left[G_{\kappa}^{0}\left(r_{x}, r_{u} ; z\right) G_{\kappa}^{0}\left(r_{u}, r_{x} ; z\right)\right] \tag{65}
\end{align*}
$$

Green's functions G_{κ} and G_{κ}^{0} are constructed from numerical solutions through:

$$
G_{\kappa}\left(r_{x}, r_{y} ; z\right)=\sum_{n=1}^{n_{\kappa}} \frac{\psi_{n, \kappa}\left(r_{x}\right) \psi_{n, \kappa}^{\dagger}\left(r_{y}\right)}{E_{n, \kappa}-z}, \quad G_{\kappa}^{0}\left(r_{x}, r_{y} ; z\right)=\sum_{n=1}^{n_{\kappa}} \frac{\varphi_{n, \kappa}\left(r_{x}\right) \varphi_{n, \kappa}^{\dagger}\left(r_{y}\right)}{E_{n, \kappa}^{0}-z},
$$

B6: VP density in the finite basis

The zero-potential VP density:

$$
\rho_{\kappa}^{\mathrm{VP}, 0}(x)=\frac{e|\kappa|}{4 \pi^{2} i} \int_{C_{F}} d z \operatorname{Tr}\left[G_{\kappa}^{0}\left(r_{x}, r_{x} ; z\right)\right]=\frac{e|\kappa|}{4 \pi^{2} i} \sum_{\alpha} \varphi_{\alpha, \kappa}^{\dagger}\left(r_{x}\right) \varphi_{\alpha, \kappa}\left(r_{x}\right) \int_{C_{F}} \frac{d z}{E_{\alpha, \kappa}^{0}-z}
$$

The two scenarios of $E_{\alpha, \kappa}$ are represented in the following figures:

Using Cauchy's integral formula (residue theorem), one can show that (backup slides):

$$
\begin{equation*}
\int_{C_{F}} d z \frac{1}{E_{\alpha, \kappa}^{0}-z}=i \pi \operatorname{sgn}\left(E_{\alpha, \kappa}^{0}\right) \tag{66}
\end{equation*}
$$

This leads to the following result:

$$
\begin{equation*}
\rho_{\kappa}^{\mathrm{VP}, 0}(\boldsymbol{x})=\frac{e|\kappa|}{4 \pi} \sum_{\alpha} \operatorname{sgn}\left(E_{\alpha, \kappa}^{0}\right) \varphi_{\alpha, \kappa}^{\dagger}\left(r_{x}\right) \varphi_{\alpha, \kappa}\left(r_{x}\right) \tag{67}
\end{equation*}
$$

B7: $(\alpha Z)^{n=1} V P$ density in the finite basis

The one-potential VP density:

$$
\begin{equation*}
\rho_{\kappa}^{\mathrm{VP}, 1}(x)=\frac{e^{2}|\kappa|}{4 \pi^{2} i} \int_{0}^{\infty} r_{u}^{2} d r_{u} \phi\left(r_{u}\right) \int_{C_{F}} d z \operatorname{Tr}\left[G_{\kappa}^{0}\left(r_{x}, r_{u} ; z\right) G_{\kappa}^{0}\left(r_{u}, r_{x} ; z\right)\right] \tag{68}
\end{equation*}
$$

The two Green's functions expansions contribute with two denominators, integrating to (backup slides):

$$
\begin{equation*}
\int_{C_{F}} d z \frac{1}{E_{\alpha, \kappa}^{0}-z} \frac{1}{E_{\beta, \kappa}^{0}-z}=\pi i \frac{1-\operatorname{sgn}\left(E_{\alpha, \kappa}^{0} E_{\beta, \kappa}^{0}\right)}{\left|E_{\alpha, \kappa}^{0}\right|+\left|E_{\beta, \kappa}^{0}\right|} \tag{69}
\end{equation*}
$$

Integrating over the red variable r_{u} gives the following 1-potential VP density:

$$
\begin{equation*}
\rho_{\kappa}^{\mathrm{VP}, 1}(x)=\frac{e^{2}|\kappa|}{4 \pi} \sum_{\alpha, \beta} s_{\beta, \alpha}^{\kappa}\left(r_{x}\right) V_{\alpha, \beta}^{\kappa} \frac{1-\operatorname{sgn}\left(E_{\alpha, \kappa}^{0} E_{\beta, \kappa}^{0}\right)}{\left|E_{\alpha, \kappa}^{0}\right|+\left|E_{\beta, \kappa}^{0}\right|} \tag{70}
\end{equation*}
$$

where $V_{\alpha, \beta}^{\kappa}$ and $s_{\beta, \alpha}^{\kappa}(r)$ are given by:

$$
\begin{align*}
V_{\alpha, \beta}^{\kappa} & =\int_{0}^{\infty} r^{2} d r \phi(r) \varphi_{\alpha, \kappa}^{\dagger}(r) \varphi_{\beta, \kappa}(r) . \tag{71}\\
s_{\beta, \alpha}^{\kappa}(r) & =\varphi_{\beta, \kappa}^{\dagger}(r) \varphi_{\alpha, \kappa}(r) \tag{72}
\end{align*}
$$

B8: Contour integrations 1

The one-pole integral: $\quad \int_{C_{F}} d z \frac{1}{E_{i, \kappa}-z}=$?
Positive pole case

B8: Contour integrations 1

The one-pole integral: $\quad \int_{C_{F}} d z \frac{1}{E_{i, \kappa}-z}=$?
Positive pole case

B8: Contour integrations 1

The one-pole integral: $\quad \int_{C_{F}} d z \frac{1}{E_{i, \kappa}-z}=$?

Positive pole case

Negative pole case

B8: Contour integrations 1

The one-pole integral:

$$
\begin{equation*}
\int_{C_{F}} d z \frac{1}{E_{i, \kappa}-z}=? \tag{73}
\end{equation*}
$$

Positive pole case

Negative pole case

B8: Contour integrations 1

The one-pole integral:

$$
\begin{equation*}
\int_{C_{F}} d z \frac{1}{E_{i, \kappa}-z}=? \tag{73}
\end{equation*}
$$

Positive pole case

Negative pole case

The final result is: $\quad \int_{C_{F}} d z \frac{1}{E_{i, \kappa}-z}=i \pi \operatorname{sgn}\left(E_{i, \kappa}\right)$

B9: Contour integrations 2

The two-pole integral: $\quad \int_{C_{F}} d z \frac{1}{E_{i, \kappa}-z} \frac{1}{E_{j, \kappa}-z}=$?

Same energy signs

B9: Contour integrations 2

The two-pole integral: $\quad \int_{C_{F}} d z \frac{1}{E_{i, \kappa}-z} \frac{1}{E_{j, \kappa}-z}=$?

Same energy signs

B9: Contour integrations 2

The two-pole integral: $\quad \int_{C_{F}} d z \frac{1}{E_{i, \kappa}-z} \frac{1}{E_{j, \kappa}-z}=$?

Same energy signs

Opposite energy signs

B9: Contour integrations 2

The two-pole integral: $\quad \int_{C_{F}} d z \frac{1}{E_{i, \kappa}-z} \frac{1}{E_{j, \kappa}-z}=$?

Same energy signs

Opposite energy signs

B9: Contour integrations 2

The two-pole integral: $\quad \int_{C_{F}} d z \frac{1}{E_{i, \kappa}-z} \frac{1}{E_{j, \kappa}-z}=$?

Same energy signs

Opposite energy signs

The final result is:

$$
\begin{equation*}
\int_{C_{F}} d z \frac{1}{E_{i, \kappa}-z} \frac{1}{E_{j, \kappa}-z}=i \pi \frac{1-\operatorname{sgn}\left(E_{i, \kappa} E_{j, \kappa}\right)}{\left|E_{i, \kappa}\right|+\left|E_{j, \kappa}\right|} \tag{76}
\end{equation*}
$$

B10: VP divergence with $\mathrm{Z}=92$ point nucleus

RKB VP density for $Z=92$ with point nucleus

DKB VP density for $Z=92$ with point nucleus

B11: VP divergence with $\mathrm{Z}=92$ Gauss nucleus

RKB VP density for $\mathrm{Z}=92$ with Gaussian nucleus

DKB VP density for $\mathrm{Z}=92$ with Gaussian nucleus

B12: $\alpha(Z \alpha)$ effective VP potential

In the point-nucleus problem, the Uehling potential is found to be

$$
\begin{align*}
\varphi_{\text {Ueh. }}^{\text {point }}(x) & =\frac{2 \alpha}{3 \pi} \sqrt{\frac{Z e}{4 \pi \epsilon_{0} r_{x}}} K_{1}\left(\frac{2}{\bar{\lambda}} r_{x}\right) \tag{77}\\
K_{1}(x) & =\int_{1}^{\infty} d \zeta e^{-x \zeta}\left(\frac{1}{\zeta^{2}}+\frac{1}{2 \zeta^{4}}\right) \sqrt{\zeta^{2}-1} \tag{78}
\end{align*}
$$

For a general nucleus, with an arbitrary normalized nuclear distribution $\rho^{\text {nuc. }}(\boldsymbol{x})$, this potential becomes

$$
\begin{equation*}
\varphi_{\text {Ueh. }}^{\text {nuc. }}(x)=\int d^{3} y \rho^{\text {nuc. }}(x-y) \varphi_{\text {Ueh. }}^{\text {point }}(y) \tag{79}
\end{equation*}
$$

Figure: The $\alpha(Z \alpha)$ vacuum polarization process (Uehling)

B13: $\alpha(Z \alpha)^{3}$ effective VP potential

The first non-linear vacuum polarization potential is given by

$$
\begin{aligned}
\varphi_{\text {WK }}^{\text {point }}(x)= & -\alpha(Z \alpha)^{2} \frac{Z e}{4 \pi \epsilon_{0} r_{x}} \int_{0}^{\infty} \mathrm{d} t \mathrm{e}^{-2 t \tau_{x}} \frac{1}{t^{4}} \\
& \times\left\{-\frac{1}{12} \pi^{2} \sqrt{t^{2}-1} \theta(t-1)+\int_{0}^{t} \mathrm{~d} x \sqrt{t^{2}-x^{2}} f(x)\right\}
\end{aligned}
$$

Figure: The $\alpha(Z \alpha)^{3}$ vacuum polarization process (Wichmann and Kroll).

B14: $\alpha(Z \alpha)^{3}$ effective VP potential

Functions $f(x)$ and $\psi(x)$ are given by

$$
\begin{aligned}
f(x) & =-2 x \psi\left(x^{2}\right)-x \log ^{2}\left(1-x^{2}\right)+\frac{1-x^{2}}{x^{2}} \log \left(1-x^{2}\right) \log \frac{1+x}{1-x}+\frac{1-x^{2}}{4 x} \log ^{2} \frac{1+x}{1-x} \\
& +\frac{2-x^{2}}{x\left(1-x^{2}\right)} \log \left(1-x^{2}\right)+\frac{3-2 x^{2}}{1-x^{2}} \log \frac{1+x}{1-x}-3 x, \quad x<1 \\
f(x) & =\frac{1}{x^{2}} \psi\left(\frac{1}{x^{2}}\right)-\frac{3 x^{2}+1}{2 x}\left[\psi\left(\frac{1}{x}\right)-\psi\left(-\frac{1}{x}\right)\right]-\frac{2 x^{2}-1}{2 x^{2}}\left[\log ^{2}\left(1-\frac{1}{x^{2}}\right)\right. \\
& \left.+\log ^{2} \frac{x+1}{x-1}\right]-(2 x-1) \log \left(1-\frac{1}{x^{2}}\right) \log \frac{x+1}{x-1}+\frac{3 x^{2}+1}{4 x} \log ^{2} \frac{x+1}{x-1} \\
& -2 \log x \log \left(1-\frac{1}{x^{2}}\right)-\frac{3 x^{2}+1}{2 x} \log x \log \frac{x+1}{x-1}+\left[5-\frac{x\left(3 x^{2}-2\right)}{x^{2}-1}\right] \\
& \times \log \left(1-\frac{1}{x^{2}}\right)+\left[\frac{3 x^{2}+2}{x}-\frac{3 x^{2}-2}{x^{2}-1}\right] \log \frac{x+1}{x-1}+3 \log x-3, \quad x>1, \\
\psi(x) & =-\int_{0}^{x} \mathrm{~d} x^{\prime} \frac{\log \left(1-x^{\prime}\right)}{x^{\prime}}=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}, \quad-1 \leqslant x \leqslant 1
\end{aligned}
$$

[^0]: ${ }^{\text {a }}$ Blomqvist, J. Nuc. Phys. B 48.1 (1972): 95-103.
 ${ }^{\text {b }}$ Pyykkö and Zhao. Journal of Physics B:36.8 (2003): 1469.
 ${ }^{c}$ Flambaum and Ginges. Phys. Rev. A 72.5 (2005): 052115.
 ${ }^{d}$ Shabaev et al. Phys. Rev. A 88.1 (2013): 012513.

[^1]: ${ }^{1}$ Sun, Q., Liu, W and Kutzelnigg W. Theor. Chem. Acc. 129.3 (2011): 423-436. ${ }^{2}$ Shabaev, V. M., et al. Phys. Rev. Lett. 93.13 (2004): 130405.

[^2]: ${ }^{1}$ Sun, Q., Liu, W and Kutzelnigg W. Theor. Chem. Acc. 129.3 (2011): 423-436.

[^3]: ${ }^{3}$ Maen Salman, and Trond Saue. "Charge conjugation symmetry in the finite basis approximation of the Dirac equation." Symmetry 12.7 (2020): 1121.

[^4]: ${ }^{3}$ Maen Salman, and Trond Saue. "Charge conjugation symmetry in the finite basis approximation of the Dirac equation." Symmetry 12.7 (2020): 1121.

[^5]: ${ }^{4}$ Wichmann and Kroll. "Vacuum polarization in a strong Coulomb field." Phys. Rev. 101.2 (1956): $843.10 / 29$

[^6]: ${ }^{4}$ Wichmann and Kroll. "Vacuum polarization in a strong Coulomb field." Phys. Rev. 101.2 (1956): 843.

[^7]: ${ }^{4}$ Wichmann and Kroll. "Vacuum polarization in a strong Coulomb field." Phys. Rev. 101.2 (1956): 843.

[^8]: ${ }^{4}$ Wichmann and Kroll. "Vacuum polarization in a strong Coulomb field." Phys. Rev. 101.2 (1956): 843.

[^9]: ${ }^{5}$ Rinker Jr, G. A., and L. Wilets. Phys. Rev. A 12.3 (1975): 748.
 ${ }^{6}$ Mohr, P. J., Plunien, G., and Soff, G. (1998). Phys. Rep. 293(5-6), 227-369.
 ${ }^{7}$ Kenneth G Dyall. Basis sets for the $1 s^{2}$ ground states of two-electron rare gas ions $6 / 29$

[^10]: ${ }^{5}$ Rinker Jr, G. A., and L. Wilets. Phys. Rev. A 12.3 (1975): 748.
 ${ }^{6}$ Mohr, P. J., Plunien, G., and Soff, G. (1998). Phys. Rep. 293(5-6), 227-369.
 ${ }^{7}$ Kenneth G Dyall. Basis sets for the $1 \mathrm{~s}^{2}$ ground states of two-electron rare gas ions $6 / 29$

[^11]: ${ }^{5}$ Rinker Jr, G. A., and L. Wilets. Phys. Rev. A 12.3 (1975): 748.
 ${ }^{6}$ Mohr, P. J., Plunien, G., and Soff, G. (1998). Phys. Rep. 293(5-6), 227-369.
 ${ }^{7}$ Kenneth G Dyall. Basis sets for the $1 s^{2}$ ground states of two-electron rare gas ions $6 / 29$

[^12]: ${ }^{5}$ Rinker Jr, G. A., and L. Wilets. Phys. Rev. A 12.3 (1975): 748.
 ${ }^{6}$ Mohr, P. J., Plunien, G., and Soff, G. (1998). Phys. Rep. 293(5-6), 227-369.
 ${ }^{7}$ Kenneth G Dyall. Basis sets for the $1 \mathrm{~s}^{2}$ ground states of two-electron rare gas ions $6 / 29$

[^13]: ${ }^{8}$ Furry, Wendell H. "A symmetry theorem in the positron theory." Phys. Rev. 51.2 (1937): 125.

[^14]: ${ }^{8}$ Furry, Wendell H. "A symmetry theorem in the positron theory." Phys. Rev. 51.2 (1937): 125.

