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Plan and motivations

Presentation plan
1 The Dirac equation

1 Charge conjugation symmetry
2 Finite basis approximation: Kinetic Balances

2 α-order Vacuum Polarization (BSQED)
1 Derive the suitable (for numerical calculations) (Zα) expansion expressions
2 Present VP density calculations in the finite basis

1 Qualitative journey: the full α VP density
2 Quantitative goal: the α (Zα)n≥3 VP density

Motivations to construct QED corrections from numerical Dirac solutions

Effective VP potentials are not suited for practical calculations.a

Effective SE potentials are parameterized to fit exact 1e SE energy-shift.bcd

aBlomqvist, J. Nuc. Phys. B 48.1 (1972): 95-103.
bPyykkö and Zhao. Journal of Physics B:36.8 (2003): 1469.
cFlambaum and Ginges. Phys. Rev. A 72.5 (2005): 052115.
dShabaev et al. Phys. Rev. A 88.1 (2013): 012513.
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Relativistic electron/positron theory

The electron behavior is, up to a large extent, pre-
dicted by the Dirac equation

[i~γµ∂µ −mc]ψe (x) = 0. (1)

In the presence of a general external four-potential
Aµ = (φ,A)µ, this equation becomes (qelectron = −e)[

γµ
(
i~∂µ +e Aµ (x)

)
−mc

]
ψe (x) = 0. (2)

The positron’s (electron’s antiparticle partner) wave-
function obeys[

γµ
(
i~∂µ −e Aµ (x)

)
−mc

]
ψp (x) = 0. (3)

The two wavefunctions are related by the charge con-
jugation operation

ψp (x) = Cψe (x) = γ2 [ψe (x)]∗ . (4)

Figure: Paul Dirac

Figure: First identified positron
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C-symmetry in the time-independent problem
In the time-independent potential case: A (x) = A (x), one can write

ψn (x) = e−
i
~ Entψn (x) (5)

where {En, ψn (x)} forms a solution of the time-independent Dirac equation:[
−cα · [+i~∇−eA (x)] + βmc2−eφ (x)

]
ψ (x) = +E ψ (x) . (6)

The charge-conjugated solution Cψ (x) (positron), obeys:[
−cα · [+i~∇+eA (x)] + βmc2+eφ (x)

]
Cψ (x) = −E Cψ (x) . (7)

Electron Free Positron

+mc2

mc2

Electron Positron

Charge −e +e

Wavefunction ψ (x) =

[
ψL (x)
ψS (x)

]
Cψ (x) =

[
σ2ψS∗ (x)
−σ2ψL∗ (x)

]
Energy +E −E

In the free-particle case (black spectrum), we have:

[
−cα · i~∇ + βmc2

]
ψ (x) = +E ψ (x) . (8)[

−cα · i~∇ + βmc2
]
Cψ (x) = −E Cψ (x) . (9)
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Relativistic electron theory in the finite basis problem

The radial Dirac equation reads[
mc2 − eφ (r)− En,κ −c~

[
d
dr
− κ

r

]
c~
[

d
dr

+ κ
r

]
−mc2 − eφ (r)− En,κ

] [
Pn,κ

Qn,κ

]
= 0 (10)

L and S component functions (Pn,κ and Qn,κ) are expanded in L and S basis sets:[
Pn,κ

Qn,κ

]
≈
[
Pα,κ
Qα,κ

]
=

nLκ∑
i=1

cLα,κ,i

[
πL
κ,i (r)
0

]
+

nSκ∑
i=1

cSα,κ,i

[
0

πS
κ,i (r)

]
(11)

The problem

Arbitrary choices of radial functions πLκ,i and π
S
κ,i lead to:

1 Spurious solutions (non-physical eigenvalues).
2 Variational collapse (non-physical convergence to low energy values).

The solution
Respect the right (or at least the approximated) coupling between large
and small component functions: Kinetic balance!
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Kinetic balances
The radial Dirac equation can be written as:

Qn,κ =
~
mc

1
1 + (eφ+ En,κ) /mc2

[
d

dr
+
κ

r

]
Pn,κ (12)

Pn,κ =
~
mc

1
1− (eφ+ En,κ) /mc2

[
d

dr
−
κ

r

]
Qn,κ. (13)

Restricted Kinetic Balance

Qκ ≈ ~
2mc

[
d
dr +

κ
r

]
Pκ

Inverse Kinetic Balance

Pn,κ ≈ ~
2mc

[
d
dr −

κ
r

]
Qn,κ

RKB basis set[
Pα,κ
Qα,κ

]
=

nκ∑
i=1

cLα,κ,i

[
πL
κ,i

0

]
+

nκ∑
i=1

cSα,κ,i

[
0

~
2mc

[
d
dr

+ κ
r

]
πL
κ,i

]
IKB basis set1[
Pα,κ
Qα,κ

]
=

nκ∑
i=1

cLα,κ,i

[
~

2mc

[
d
dr
− κ

r

]
πS
κ,i

0

]
+

nκ∑
i=1

cSα,κ,i

[
0
πS
κ,i

]

Dual Kinetic Balance (DKB) basis set2[
Pα,κ
Qα,κ

]
=

nLκ∑
i=1

cLα,κ,i

[
πL
κ,i

~
2mc

[
d
dr

+ κ
r

]
πL
κ,i

]
+

nSκ∑
i=1

cSα,κ,i

[
~

2mc

[
d
dr
− κ

r

]
πS
κ,i

πS
κ,i

]

1Sun, Q., Liu, W and Kutzelnigg W. Theor. Chem. Acc. 129.3 (2011): 423-436.
2Shabaev, V. M., et al. Phys. Rev. Lett. 93.13 (2004): 130405.
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C-symmetry in the finite basis

A basis set is C-symmetric if
Cϕi (x) ∈ {ϕj (x)}nj=1 , ∀i .

RKB can be made
C-symmetric only with

πL
κ,i = rj`

(
b|κ|,i r

)
πS
κ,i = rj`−sgn(κ)

(
b|κ|,i r

) (14)

This is not a practical basis.

DKB can be made
C-symmetric with3

πL
−κ,i = πS

+κ,i (15)

without restrictions.

C-DKB with Gaussian functions
The spherical Gaussian basis functions are:

πLκ,i = r |κ+ 1
2 |+ 1

2 e−ζ
L
κ,i r

2
(16)

πSκ,i = r |κ−
1
2 |+ 1

2 e−ζ
S
κ,i r

2
(17)

Gaussian DKB becomes C-symmetric with

κ −1 +1 −2 +2 . . .

ζLκ • • • • . . .

ζSκ • • • • . . .

Table: Same color dots = same set of exponents.

3Maen Salman, and Trond Saue. "Charge conjugation symmetry in the finite basis
approximation of the Dirac equation." Symmetry 12.7 (2020): 1121.
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Bound-state QED
A fundamental quantity in the QED problem is the scattering matrix (Ŝ-matrix)

Ŝ (ε, λ) = T
[

exp

(
λ

i~c

∫
d4xe−

ε
~ |t|ĤQED

I (x)

)]
, with x = (ct, x) (18)

0 < ε� 1 (adiabatic switch term),

ĤQED
I is the QED interaction Hamiltonian density

ĤQED
I (x) = −ec ¯̂Ψ (x) γµΨ̂ (x) Âµ (x) . (19)

This equation couples the electron field operator Ψ̂ (x) that solves[
γµ
(
i~∂µ + eAe

µ (x)
)
−mc

]
Ψ̂ (x) = 0, with Ae

µ (x) : external potential, (20)

to the photon field operator Âµ (x).

(a) Single-photon exchange

(b) Vacuum polarization (c) Self-energy

Figure: The no-real-photon e2-order BSQED corrections (Ŝ(2))
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Ŝ (ε, λ) = T
[

exp

(
λ

i~c

∫
d4xe−

ε
~ |t|ĤQED
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Vacuum polarization

(a) The hydrogen problem

(b) The real hydrogen problem

x1 x2

(c) Vacuum polarization

In the presence of an external four-potential

Ae (x) = (φ (x) /c , 0) (21)

the VP energy-shift experienced by an atomic state {Ei , ψi} becomes

EVP
i = −e

∫
d3x1

∫
d3x2ψ

†
i (x1)ψi (x1)

1
4πε0 |x1 − x2|

ρVP (x2) (22)

where the vacuum polarization cloud density can be written as

ρVP (x) =
e

2

[∑
Ei>0

ψ†i (x)ψi (x)−
∑
Ei<0

ψ†i (x)ψi (x)
]

(23)
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Vacuum polarization

The VP density is given by the following formula4:

ρVP (x) =
e

2

[∑
Ei>0

ψ†i (x)ψi (x)−
∑
Ei<0

ψ†i (x)ψi (x)
]

(24)

In the spherical problem, one can use the spherical spinors’ properties to write:

ρVP (x) =
∑

κ=±1,±2,...

ρVP
κ (x) (25)

ρVP
κ (x) =

e |κ|
4πr2

∑
n

sgn (En,κ)
[
P2
n,κ + Q2

n,κ

]
, (26)

In the spherical free-particle case, C-symmetry allows to write the −κ density as:

ρVP
−κ (x) =

e |κ|
4πr2

∑
n

sgn (En,−κ)
[
P2
n,−κ + Q2

n,−κ
]
= −ρVP

κ (x) (27)

This relation shows that opposite κ-sign densities cancel each other out:

ρVP (x) =
∑

κ=+1,+2...

[
ρVP
κ (x) + ρVP

−κ (x)
]
= 0 (28)

4Wichmann and Kroll. "Vacuum polarization in a strong Coulomb field." Phys. Rev. 101.2 (1956): 843.
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Numerical vacuum polarization density

We shall now use RKB and C-DKB to compute the VP density

ρVP
κ (x) =

e |κ|
4πr2

n∑
i=1

sgn (Ei,κ)
[
P2
i,κ +Q2

i,κ

]
, (29)

where n = nL + nS is the total number of basis functions, Pi,κ,Qi,κ are the large
and small radial Dirac wavefunctions, associated with the energy-level Ei,κ.

Qualitative computations
We shall first present RKB and C-DKB computations, and focus on:

1 Furry’s theorem obedience (in the free problem).
2 The large distance behavior (in the atomic problem).

Quantitative computations
Subtract the VP density that is linear in the nuclear charge (containing the
Uehling effect + divergence), and compare our results with the more
sophisticated computation.
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A sign of C-symmetry violation: VP density with j-basis

We have done two free (Z=0) calculations using uranium j-basis:
RKB 4! (C-symmetry is violated):
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RKB vs C-DKB: 1e uranium atom at large distances

RKB 4! (C-symmetry is violated):

0.02 0.04 0.06 0.08 0.10 0.12 0.14

r (a.u.)
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

a0

r2 VP
1

r2 VP
+1

0.02 0.04 0.06 0.08 0.10 0.12 0.14

r (a.u.)

2

1

0

1

2
a0

r2( VP
1 + VP

+1)

DKB 4 (C-symmetry is obeyed):

0.02 0.04 0.06 0.08 0.10 0.12 0.14

r (a.u.)
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

a0

r2 VP
1

r2 VP
+1

0.02 0.04 0.06 0.08 0.10 0.12 0.14

r (a.u.)

2

1

0

1

2
a0

r2( VP
1 + VP

+1)



13/29

RKB vs C-DKB: 1e uranium atom at large distances

RKB 4! (C-symmetry is violated):

0.02 0.04 0.06 0.08 0.10 0.12 0.14

r (a.u.)
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

a0

r2 VP
1

r2 VP
+1

0.02 0.04 0.06 0.08 0.10 0.12 0.14

r (a.u.)

2

1

0

1

2
a0

r2( VP
1 + VP

+1)

DKB 4 (C-symmetry is obeyed):

0.02 0.04 0.06 0.08 0.10 0.12 0.14

r (a.u.)
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

a0

r2 VP
1

r2 VP
+1

0.02 0.04 0.06 0.08 0.10 0.12 0.14

r (a.u.)

2

1

0

1

2
a0

r2( VP
1 + VP

+1)



14/29

The linear vacuum polarization is divergent!

The total VP density can be expanded in powers of the external scalar potential φ (x) as

ρVPκ (x) =
e |κ|
4π2i

∫
CF

dz Tr [Gκ (rx , rx ; z)] = ρVP,0κ (x) + ρVP,1κ (x) + ρVP,2κ (x) + . . . (30)

Furry’s theorem

Diagrams with free electron loops with odd number of vertices are discarded.

VP

=rx

VP, 0

+rx

VP, 1

+rx ru

VP, 2

+ . . .rx

ru

rv

ρVP,1κ (x) (linear in Z) is divergent!

ρVP,1 (x) =

∫
d4q

(2π~)4
e−

i
~ q·xΠ00 (q)φ (q) . (31)

The source of divergence comes from the polarization tensor (photon self-energy)

Πµν (q) = −
i~e2

c

∫
d4p

(2π~)4
Tr

[
γµ

/p + mc

p2 −m2c2 + iε
γν

/p − /q + mc

(p − q)2 −m2c2 + iε

]
∼ Λ2 (32)
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On the infinite: by David Hilbert

Hilbert, D. On the infinite (1984). In P. Benacerraf and H. Putnam (Eds.),
Philosophy of Mathematics: Selected Readings (p183-201). Cambridge University Press.
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Subtracting the linear vacuum polarization

The VP density that is linear in Z is divergent. Rinker and Wilets5 suggested to remove
the linear part through

ρn≥3κ (x ;Z) = ρVPκ (x ;Z)− lim
δ→0

Z

δ
ρVPκ (x ; δ)

Mohr et al.6 computed this density for uranium 238 (Z=92) using exact
expressions of the free and atomic Green’s function [Wichmann and Kroll], and the
shell nuclear model (hollow sphere).

We numerically compute this density, with two different nuclear models, and two
basis sets respecting the C-symmetry (C-DKB):

1 Point nucleus with:
1 16G basis (Dyall 1s2.7z7).
2 30G basis: 30 even-tempered exponents.

2 Shell nucleus with:
1 16G basis.
2 30G basis.

5Rinker Jr, G. A., and L. Wilets. Phys. Rev. A 12.3 (1975): 748.
6Mohr, P. J., Plunien, G., and Soff, G. (1998). Phys. Rep. 293(5-6), 227-369.
7Kenneth G Dyall. Basis sets for the 1s2 ground states of two-electron rare gas ions
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Non-linear VP density: C-DKB + point nucleus + 16G basis
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Non-linear vacuum polarization density: r2( VP, n
+ + VP, n), for = 1 and n 3
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Non-linear VP density: C-DKB + shell nucleus + 16G basis
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Non-linear VP density in RKB: Gauss nucleus + 16G
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RKB favors positive- on negative-energy solutions

RKB violates the C-symmetry. We thus have:
ρVP,0κ , ρVP,2κ , ρVP,4κ , . . . 6= 0



21/29

Non-linear VP density in RKB: Gauss nucleus + 16G

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
r( )

0.014

0.012

0.010

0.008

0.006

0.004

0.002

0.000

r2

at small distances

Mohr et al.  (Shell nucleus)
Current work (16G basis with Gauss nucleus)

1 2 3 4 5 6
r( )

10 8

10 7

10 6

10 5

10 4

10 3 at large distances

Mohr et al.  (Shell nucleus)
Current work (16G basis with Gauss nucleus)

Non-linear vacuum polarization density: r2( VP, n
+ + VP, n), for = 1 and n 3

Why?

RKB favors positive- on negative-energy solutions

RKB violates the C-symmetry. We thus have:
ρVP,0κ , ρVP,2κ , ρVP,4κ , . . . 6= 0



22/29

Vacuum polarization density: (Zα)-expansion
The VP density is related to the Dirac-Coulomb Green’s function by:

ρVP (x) =
e

4π2i

∑
κ

|κ|
∫
CF

dz Tr [Gκ (rx , rx ; z)] , (33)

This Green’s function satisfies the following Dirac equation:

∑
κ

+mc2 − eφ (rx)− z −~c
[
∂
∂rx

+ 1−κ
rx

]
~c
[
∂
∂rx

+ 1+κ
rx

]
−mc2 − eφ (rx)− z

Gκ (rx , ry ; z) =
δ (rx − ry )

rx ry
12, (34)

and can be written as:

Gκ (rx , ry ; z) =
∑
n

ψn,κ (rx )ψ†n,κ (ry )

En,κ − z
=
∑
n

1
En,κ − z

[
GLL
n,κ (rx , ry ) GLS

n,κ (rx , ry )

GSL
n,κ (rx , ry ) GSS

κ (rx , ry )

]
, (35)

Gαβn,κ (rx , ry ) = Rαn,κ (rx )Rβn,κ (ry ) , α, β = L, S. (36)

The total Green’s function can be expanded as:

Gκ (rx , ry ; z) = G0
κ (rx , ry ; z) + e

∫ ∞
0

r2u druG
0
κ (rx , ru ; z)φ (ru)G0

κ (ru , ry ; z)

+e2
∫ ∞
0

r2u dru

∫ ∞
0

r2v drvG
0
κ (rx , ru ; z)φ (ru)G0

κ (ru , rv ; z)φ (rv )G0
κ (rv , ry ; z) +O

(
e6
)
,

(37)

where G 0
κ (rx , ry ; z) = limZ→0 Gκ (rx , ry ; z).
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VP density: (Zα)-expansion
The full vacuum polarization density can be thus written as a sum:

ρVPκ (x) =
e |κ|
4π2i

∫
CF

dz Tr [Gκ (rx , rx ; z)] = ρVP,0κ (x) + ρVP,1κ (x) + ρVP,2κ (x) + . . . (38)

VP

=rx

VP, 0

+rx

VP, 1

+rx ru

VP, 2

+ . . .rx

ru

rv

The associated individual VP densities are given by:

ρVP,0κ (x) =
e |κ|
4π2i

∫
CF

dz Tr
[
G0
κ (rx , rx ; z)

]
(39)

ρVP,1κ (x) =
e2 |κ|
4π2i

∫ ∞
0

r2u druφ (ru)

∫
CF

dz Tr
[
G0
κ (rx , ru ; z)G0

κ (ru , rx ; z)
]

(40)

... (41)
We shall use the numerical free Green’s function expression

G0
κ (rx , ry ; z) =

nκ∑
i=1

ϕκ,i (rx )ϕ†κ,i (ry )

Eκ,i − z
(42)

to derive the n-potential VP density expression: ρVP,nκ .
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(Zα)n VP density in the finite basis
The n-potential VP density:

ρnκ (x) =
en+1 |κ|
4π2i

∫ ∞
0

r21 dr1φ (r1) . . .

∫ ∞
0

r2n drnφ (rn)

×
∫
CF

dz Tr
[
G0
κ (rx , r1; z)G0

κ (r1, r2; z) . . .G0
κ (rn−1, rn; z)G0

κ (rn, rx ; z)
]
,

(43)

can be written as

ρnκ (x) =
en+1 |κ|
4π2rx i

∑
α1,...,αn+1

sκαn+1α1 (rx )

× Vκα1α2V
κ
α2α3 . . .V

κ
αn−1αn

Vκαnαn+1 I (n, κ)

(44)

where V κ
αβ and sκβα (r) are given by

Vκαβ =

∫ ∞
0

dr φ (r)ϕ†α,κ (r)ϕβ,κ (r) . (45)

sκβα (r) = ϕ†β,κ (r)ϕα,κ (r) . (46)

We are thus left with the evaluation of the contour integral

I (n, κ) =

∫
CF

dz
1

Eα1,κ − z
. . .

1
Eαn+1,κ − z

=? (47)

{ϕα,κ (r) ,Eα,κ} are the eigensolutions of the free radial Dirac equation.
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Vκαβ =

∫ ∞
0

dr φ (r)ϕ†α,κ (r)ϕβ,κ (r) . (45)

sκβα (r) = ϕ†β,κ (r)ϕα,κ (r) . (46)

We are thus left with the evaluation of the contour integral

I (n, κ) =

∫
CF

dz
1

Eα1,κ − z
. . .

1
Eαn+1,κ − z

=? (47)

{ϕα,κ (r) ,Eα,κ} are the eigensolutions of the free radial Dirac equation.
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(Zα)n VP density in the finite basis
The n-potential VP density:
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∫ ∞
0
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(Zα)n VP density contour integral

The remaining contour integral is given by

I (n, κ) =

∫
CF

dz
1

Eα1,κ − z
. . .

1
Eαn+1,κ − z

=? (48)

Figure: Dirac eigenvalues (black dots), and Feynman contour (CF : red path).

After a lengthy calculation, we find∫
CF

dz
1

E1 − z
. . .

1
En+1 − z

=
(−1)n iπ

∑n+1
i=1 (−1)i+1 sgn (Ei )

∏
j 6=i

∏
k>j,k 6=i

(
Ej − Ek

)∏n
l=1
∏

m>l (El − Em)

We now have the exact expression of the (Zα)n VP density!
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Furry’s theorem in the C-symmetric finite basis

The n-potential VP densities associated with ±κ are:

ρn+κ (x) =
en+1 |κ|
4π2rx i

∑
α1,...,αn+1

s+κ
αn+1,α1 (rx )V+κ

α1α2 . . .V
+κ
αnαn+1 I (n,+κ) (49)

ρn−κ (x) =
en+1 |κ|
4π2rx i

∑
α1,...,αn+1

s−καn+1,α1 (rx )V−κα1α2 . . .V
−κ
αnαn+1 I (n,−κ) (50)

If the basis is C-symmetric, then:
{
Eα,−κ = −Eα,+κ
ϕα,−κ (r) = σ1ϕα,κ (r)

, and:

V−κα1α2 = V+κ
α1α2 , s−καn+1,α1 (rx) = s+κ

αn+1,α1 (rx) , I (n,−κ) = (−1)n+1 I (n,+κ) (51)

These results lead to obedience of the Furry theorem8:

rx

r1 r2

rn 1
rn

ρnκ (x) + ρn−κ (x) =

{
2ρnκ (x) for odd n

0 for even n
(52)

Two things to know:
1 In a C-symmetric basis, even orders of VP

density vanish (as in reality).
2 One needs to calculate one κ sign VP density.

8Furry, Wendell H. "A symmetry theorem in the positron theory." Phys. Rev. 51.2 (1937): 125.
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Conclusions

1 Kinetic balances and C-symmetry:
1 RKB can be made C-symmetric using free-particle solutions as a basis

for Coulombic problems.

1 DKB can be made C-symmetric without being constrained to a
particular type of basis functions.

2 The use of non-C-symmetric basis yields non-physical VP results.
1 The use of a C-symmetric basis leads to a VP density that is

1 In line with Furry’s theorem
2 Vanishing at relatively shorter distances
3 In good agreement with the complicated many-potential (WK) density
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Perspectives

Next goals
1 Compute individual odd-order VP densities ρnκ (x) using freshly derived results and

check their convergence to the total ρVP (x) (ongoing).
2 Compute hydrogenic energy-shifts associated with the VP process (ongoing).
3 Solve the self-consistent VP problem.

Near future goals
1 Extend this approach to the complicated (non-local) self-energy problem: design a

numerical regularization/renormalization scheme (ongoing project).
2 Include the basis-computed e2-order VP and SE corrections in the simplest

many-body approximation (Hartree-Fock).

Far future goals
1 Extend our machinery to more sophisticated (correlated) methods.
2 Extend the basis-set-computed e2 VP and SE to en-orders with n > 2.
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Renormalization

Q: How to get rid of your divergences?

A: As you do with dust:
1 Swipe it under the rug (rug = bare physics).
2 Define the whole system as your new rug (observed physics).

3 Make Dirac angry

Dirac, P. A. M. "Directions in physics. Lectures delivered during a visit to Australia
and New Zealand, August/September 1975." (1978).
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B1: Gaussian bases with RKB

The spherical Gaussian basis functions are:

πLκ,i = r |κ+ 1
2 |+ 1

2 e−ζ
L
κ,i r

2
(53)

πSκ,i =
~

2mc

[
d

dr
+
κ

r

]
πLκ,i (54)

`-basis: Same exponents for same `-functions.
j-basis: Same exponents for same j-functions.

κ `-basis j-basis
s 1
2
−1 • •

p 1
2

+1 • •
p 3
2
−2 • •

d 3
2

+2 • •
d 5
2
−3 • •

...
...

...
...

Table: Same color means same list of exponents
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B1: Gaussian bases with DKB

The spherical Gaussian basis functions are:

πLκ,i = r |κ+ 1
2 |+ 1

2 e−ζ
L
κ,i r

2
(55)

πSκ,i = r |κ−
1
2 |+ 1

2 e−ζ
S
κ,i r

2
(56)

κ ` j ζL ζS

-1 0 1
2 • •

+1 1 1
2 • •

-2 1 3
2 • •

+2 2 3
2 • •

-3 2 5
2 • •

...
...

...
(a) Exponents in C-DKB

κ ` j ζL ζS

-1 0 1
2 • •

+1 1 1
2 • •

-2 1 3
2 • •

+2 2 3
2 • •

-3 2 5
2 • •

...
...

...
(b) Exponents in `-bases

κ ` j ζL ζS

-1 0 1
2 • •

+1 1 1
2 • •

-2 1 3
2 • •

+2 2 3
2 • •

-3 2 5
2 • •

...
...

...
(c) Exponents in j-bases
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B2: Uranium exponents
i 16G (7z basis)

1 5.66530865E+07
2 1.50715339E+07
3 5.14926020E+06
4 1.95346438E+06
5 8.11107677E+05
6 3.55863972E+05
7 1.63626745E+05
8 7.76952979E+04
9 3.78943130E+04
10 1.88681659E+04
11 9.56625072E+03
12 4.92635288E+03
13 2.57221011E+03
14 1.35785927E+03
15 7.19791611E+02
16 3.73653024E+02

i 30G
...

...
1 5.6653086E+07 16 1.1844662E+05
2 3.7547139E+07 17 7.8501137E+04
3 2.4884569E+07 18 5.2027052E+04
4 1.6492382E+07 19 3.4481210E+04
5 1.0930415E+07 20 2.2852608E+04
6 7.2441918E+06 21 1.5145689E+01
7 4.8011272E+06 22 1.0037887E+04
8 3.1819730E+06 23 6.6526640E+03
9 2.1088698E+06 24 4.4090890E+03
10 1.3976648E+06 25 2.9221475E+03
11 9.2630991E+05 26 1.9366690E+03
12 6.1391689E+05 27 1.2835379E+03
13 4.0687673E+05 28 8.5067164E+02
14 2.6965975E+05 29 5.6378722E+02
15 1.7871846E+05 30 3.7365302E+02
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B3: Kinetic balances

The radial Dirac equation can be written as:

Qn,κ =
~
mc

1

1+ eϕ+En,κ

mc2

[
d

dr
+
κ

r

]
Pn,κ (57)

Pn,κ =
~
mc

1

1− eϕ+En,κ

mc2

[
d

dr
− κ

r

]
Qn,κ. (58)

Q1,-1
exact

Q1,-1
AB

Q1,-1
RKB

0.02 0.04 0.06 0.08 0.10
r(a.u.)

-6

-5

-4

-3

-2

-1

1
a0

Figure: AB and RKB approxs of the 1e
radon ground state small component.

Atomic Balance (AB):

QAB
κ = c~

2mc2+eϕ

[
d
dr +

κ
r

]
Pκ

Restricted Kinetic Balance (RKB):
QRKB
κ = ~

2mc

[
d
dr +

κ
r

]
Pκ

Inverse Kinetic Balance (IKB):
P IKB
n,κ = ~

2mc

[
d
dr −

κ
r

]
Qn,κ



4/15

B3: Kinetic balances

The radial Dirac equation can be written as:

Qn,κ =
~
mc

1

1+ eϕ+En,κ

mc2

[
d

dr
+
κ

r

]
Pn,κ (57)

Pn,κ =
~
mc

1

1− eϕ+En,κ

mc2

[
d

dr
− κ

r

]
Qn,κ. (58)

Q1,-1
exact

Q1,-1
AB

Q1,-1
RKB

0.02 0.04 0.06 0.08 0.10
r(a.u.)

-6

-5

-4

-3

-2

-1

1
a0

Figure: AB and RKB approxs of the 1e
radon ground state small component.

Atomic Balance (AB):

QAB
κ = c~

2mc2+eϕ

[
d
dr +

κ
r

]
Pκ

Restricted Kinetic Balance (RKB):
QRKB
κ = ~

2mc

[
d
dr +

κ
r

]
Pκ

Inverse Kinetic Balance (IKB):
P IKB
n,κ = ~

2mc

[
d
dr −

κ
r

]
Qn,κ



4/15

B3: Kinetic balances

The radial Dirac equation can be written as:

Qn,κ =
~
mc

1

1+ eϕ+En,κ

mc2

[
d

dr
+
κ

r

]
Pn,κ (57)

Pn,κ =
~
mc

1

1− eϕ+En,κ

mc2

[
d

dr
− κ

r

]
Qn,κ. (58)

Q1,-1
exact

Q1,-1
AB

Q1,-1
RKB

0.02 0.04 0.06 0.08 0.10
r(a.u.)

-6

-5

-4

-3

-2

-1

1
a0

Figure: AB and RKB approxs of the 1e
radon ground state small component.

Atomic Balance (AB):

QAB
κ = c~

2mc2+eϕ

[
d
dr +

κ
r

]
Pκ

Restricted Kinetic Balance (RKB):
QRKB
κ = ~

2mc

[
d
dr +

κ
r

]
Pκ

Inverse Kinetic Balance (IKB):
P IKB
n,κ = ~

2mc

[
d
dr −

κ
r

]
Qn,κ



4/15

B3: Kinetic balances

The radial Dirac equation can be written as:

Qn,κ =
~
mc

1

1+ eϕ+En,κ

mc2

[
d

dr
+
κ

r

]
Pn,κ (57)

Pn,κ =
~
mc

1

1− eϕ+En,κ

mc2

[
d

dr
− κ

r

]
Qn,κ. (58)

Q1,-1
exact

Q1,-1
AB

Q1,-1
RKB

0.02 0.04 0.06 0.08 0.10
r(a.u.)

-6

-5

-4

-3

-2

-1

1
a0

Figure: AB and RKB approxs of the 1e
radon ground state small component.

Atomic Balance (AB):

QAB
κ = c~

2mc2+eϕ

[
d
dr +

κ
r

]
Pκ

Restricted Kinetic Balance (RKB):
QRKB
κ = ~

2mc

[
d
dr +

κ
r

]
Pκ

Inverse Kinetic Balance (IKB):
P IKB
n,κ = ~

2mc

[
d
dr −

κ
r

]
Qn,κ



4/15

B3: Kinetic balances

The radial Dirac equation can be written as:

Qn,κ =
~
mc

1

1+ eϕ+En,κ

mc2

[
d

dr
+
κ

r

]
Pn,κ (57)

Pn,κ =
~
mc

1

1− eϕ+En,κ

mc2

[
d

dr
− κ

r

]
Qn,κ. (58)

Q1,-1
exact

Q1,-1
AB

Q1,-1
RKB

0.02 0.04 0.06 0.08 0.10
r(a.u.)

-6

-5

-4

-3

-2

-1

1
a0

Figure: AB and RKB approxs of the 1e
radon ground state small component.

Atomic Balance (AB):

QAB
κ = c~

2mc2+eϕ

[
d
dr +

κ
r

]
Pκ

Restricted Kinetic Balance (RKB):
QRKB
κ = ~

2mc

[
d
dr +

κ
r

]
Pκ

Inverse Kinetic Balance (IKB):
P IKB
n,κ = ~

2mc

[
d
dr −

κ
r

]
Qn,κ



5/15

B4: Vacuum polarization density: (αZ )-expansion

The VP density is related to the Dirac-Coulomb Green’s function by:

ρVP (x) =
e

4π2i

∑
κ

|κ|
∫
CF

dz Tr [Gκ (rx , rx ; z)] , (59)

This Green’s function satisfies the following Dirac equation:

∑
κ

+mc2 − eφ (rx)− z −~c
[
∂
∂rx

+ 1−κ
rx

]
~c
[
∂
∂rx

+ 1+κ
rx

]
−mc2 − eφ (rx)− z

Gκ (rx , ry ; z) =
δ (rx − ry )

rx ry
12, (60)

and can be written as:

Gκ (rx , ry ; z) =
∑
n

ψn,κ (rx)ψ†n,κ (ry )

En,κ − z

Using the well-known identity:
1

A− B
=

1
A

+
1
A
B
1
A

+
1
A
B
1
A
B
1
A

+ . . . , (61)

the total Green’s function can be expanded as:

Gκ = G 0
κ + G 0

κeφG
0
κ + . . . (62)

We shall now plug this result in the first equation.
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B5: VP density: (αZ )-expansion in the finite basis problem
The full vacuum polarization density can be thus written as a sum:

ρVPκ (x) =
e |κ|
4π2i

∫
CF

dz Tr [Gκ (rx , rx ; z)] = ρVP,0κ (x) + ρVP,1κ (x) + ρVP,2κ (x) + . . . (63)

VP

=rx

VP, 0

+rx

VP, 1

+rx ru

VP, 2

+ . . .rx

ru

rv

Individual VP densities are given by:

ρVP,0κ (x) =
e |κ|
4π2i

∫
CF

dz Tr
[
G0
κ (rx , rx ; z)

]
(64)

ρVP,1κ (x) =
e2 |κ|
4π2i

∫ ∞
0

r2u druφ (ru)

∫
CF

dz Tr
[
G0
κ (rx , ru ; z)G0

κ (ru , rx ; z)
]

(65)

...
Green’s functions Gκ and G 0

κ are constructed from numerical solutions through:

Gκ (rx , ry ; z) =

nκ∑
n=1

ψn,κ (rx)ψ†n,κ (ry )

En,κ − z
, G 0

κ (rx , ry ; z) =

nκ∑
n=1

ϕn,κ (rx)ϕ†n,κ (ry )

E 0
n,κ − z

,
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B6: VP density in the finite basis
The zero-potential VP density:

ρVP,0κ (x) =
e |κ|
4π2i

∫
CF

dz Tr
[
G 0
κ (rx , rx ; z)

]
=

e |κ|
4π2i

∑
α

ϕ†α,κ (rx)ϕα,κ (rx)

∫
CF

dz

E 0
α,κ − z

The two scenarios of Eα,κ are represented in the following figures:

Using Cauchy’s integral formula (residue theorem), one can show that
(backup slides): ∫

CF

dz
1

E 0
α,κ − z

= iπsgn
(
E 0
α,κ

)
(66)

This leads to the following result:

ρVP,0κ (x) =
e |κ|
4π

∑
α

sgn
(
E 0
α,κ

)
ϕ†α,κ (rx)ϕα,κ (rx) , (67)
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B7: (αZ )n=1 VP density in the finite basis

The one-potential VP density:

ρVP,1κ (x) =
e2 |κ|
4π2i

∫ ∞
0

r2u druφ (ru)

∫
CF

dz Tr
[
G0
κ (rx , ru ; z)G0

κ (ru , rx ; z)
]

(68)

The two Green’s functions expansions contribute with two denominators,
integrating to (backup slides):

∫
CF

dz
1

E0
α,κ − z

1
E0
β,κ − z

= πi
1− sgn

(
E0
α,κE

0
β,κ

)
∣∣E0
α,κ

∣∣+
∣∣∣E0
β,κ

∣∣∣ , (69)

Integrating over the red variable ru gives the following 1-potential VP density:

ρVP,1κ (x) =
e2 |κ|
4π

∑
α,β

sκβ,α (rx )Vκα,β

1− sgn
(
E0
α,κE

0
β,κ

)
∣∣E0
α,κ

∣∣+
∣∣∣E0
β,κ

∣∣∣ (70)

where V κ
α,β and sκβ,α (r) are given by:

Vκα,β =

∫ ∞
0

r2dr φ (r)ϕ†α,κ (r)ϕβ,κ (r) . (71)

sκβ,α (r) = ϕ†β,κ (r)ϕα,κ (r) . (72)
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B8: Contour integrations 1

The one-pole integral:
∫
CF

dz
1

Ei,κ − z
=? (73)

Positive pole case

↓

Negative pole case

↓

The final result is:
∫
CF

dz
1

Ei,κ − z
= iπsgn (Ei,κ) (74)
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B9: Contour integrations 2

The two-pole integral:
∫
CF

dz
1

Ei,κ − z

1
Ej,κ − z

=? (75)

Same energy signs

Opposite energy signs

The final result is:
∫
CF

dz
1

Ei,κ − z

1
Ej,κ − z

= iπ
1− sgn (Ei,κEj,κ)

|Ei,κ|+ |Ej,κ|
(76)
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B10: VP divergence with Z=92 point nucleus
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B11: VP divergence with Z=92 Gauss nucleus
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B12: α (Zα) effective VP potential
In the point-nucleus problem, the Uehling potential is found to be

ϕpoint
Ueh. (x) =

2α
3π

Ze

4πε0rx
K1

(
2
λ̄
rx

)
(77)

K1 (x) =

∫ ∞
1

dζe−xζ

(
1
ζ2

+
1
2ζ4

)√
ζ2 − 1 (78)

For a general nucleus, with an arbitrary normalized nuclear distribution
ρnuc. (x), this potential becomes

ϕnuc.
Ueh. (x) =

∫
d3yρnuc. (x − y)ϕpoint

Ueh. (y) (79)

Figure: The α (Zα) vacuum polarization process (Uehling)
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B13: α (Zα)3 effective VP potential

The first non-linear vacuum polarization potential is given by

ϕpoint
WK (x) = −α (Zα)2

Ze

4πε0rx

∫ ∞
0

dte−2trx
1
t4

×
{
− 1
12
π2
√
t2 − 1θ(t − 1) +

∫ t

0
dx
√

t2 − x2f (x)

}

Figure: The α (Zα)3 vacuum polarization process (Wichmann and Kroll).
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B14: α (Zα)3 effective VP potential

Functions f (x) and ψ (x) are given by

f (x) = −2xψ
(
x2
)
− x log2

(
1− x2

)
+

1− x2

x2
log
(
1− x2

)
log

1 + x

1− x
+

1− x2

4x
log2

1 + x

1− x

+
2− x2

x (1− x2)
log
(
1− x2

)
+

3− 2x2

1− x2
log

1 + x

1− x
− 3x , x < 1

f (x) =
1
x2
ψ

(
1
x2

)
− 3x2 + 1

2x

[
ψ

(
1
x

)
− ψ

(
− 1
x

)]
− 2x2 − 1

2x2

[
log2

(
1− 1

x2

)
+ log2

x + 1
x − 1

]
− (2x − 1) log

(
1− 1

x2

)
log

x + 1
x − 1

+
3x2 + 1

4x
log2

x + 1
x − 1

− 2 log x log

(
1− 1

x2

)
− 3x2 + 1

2x
log x log

x + 1
x − 1

+

[
5−

x
(
3x2 − 2

)
x2 − 1

]

× log

(
1− 1

x2

)
+

[
3x2 + 2

x
− 3x2 − 2

x2 − 1

]
log

x + 1
x − 1

+ 3 log x − 3, x > 1,

ψ (x) = −
∫ x

0
dx ′

log (1− x ′)

x ′
=
∞∑
n=1

xn

n2
, −1 6 x 6 1
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