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The electron behavior is, up to a large extent, pre-
dicted by the Dirac equation

(i7" 9, — mc]* (x) = 0. (1)

In the presence of a general external four-potential
At = (¢, A)*, this equation becomes (Gelectron = —€)

[w (ihc’)uAH (x)) - mc} W (x)=0. (2)

The positron’s (electron’s antiparticle partner) wave- Figure: Paul Dirac
function obeys

[v” (ih@MAN (x)) - mc] WP (x)=0. (3)

The two wavefunctions are related by the charge con-
jugation operation

WP (x) = Cy® () =" [° (3] (4)

Figure: First identified positron
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Relativistic electron theory in the finite basis problem

The radial Dirac equation reads
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The problem
Arbitrary choices of radial functions 7t . and 72 ; lead to:
@ Spurious solutions (non-physical elgenvalues).

@ Variational collapse (non-physical convergence to low energy values).

| A\

The solution

Respect the right (or at least the approximated) coupling between large
and small component functions: Kinetic balance!

N




Kinetic balances

The radial Dirac equation can be written as:
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C-symmetry in the finite basis

A basis set is C-symmetric if
Coi(x) € {pj ()}, Vi

C-DKB with Gaussian functions

RKB can be made The spherical Gaussian basis functions are:
C-symmetric only with
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2 ® ® (] [ ]
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This equation couples the electron field operator ¥ (x) that solves

[ (ihdy + eA;, (x)) — mc] U(x)=0, with A7, (x): external potential, (20)

to the photon field operator A, (x).

(a) Single-photon exchange (b) Vacuum polarization (c) Self-energy

Figure: The no-real-photon e?-order BSQED corrections (S())
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In the presence of an external four-potential

A% (x) = (¢(x) /¢, 0) (21)

the VP energy-shift experienced by an atomic state {E;, 1;} becomes

P —e/d3Xl/d3X27v[1/T (x1) ¥i (x1) :

47T€0 ‘Xl — X2|
where the vacuum polarization cloud density can be written as

—;[Zw* Yo (x) = 3 0 () 1 (x) } (23)

Ei>0 E;<0

P (x2)  (22)



Vacuum polarization

The VP density is given by the following formula®:

P70 = 5| 30 0l () X 0l i) (24)

Ei>0 Ei<0

4Wichmann and Kroll. "Vacuum polarization in a strong Coulomb field." Phys. Rev. 101.2 (1956): 843.
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Vacuum polarization

The VP density is given by the following formula®:

;[Zfﬁ(}()i/)( )—Zw,-*(x)w,-(x)} (24)

Ei>0 Ei<0

In the spherical problem, one can use the spherical spinors’ properties to write:

MPE= Y A (25)
k=11,%2,...
AP 00 = 1 S (B [P+ G2, (26)

In the spherical free-particle case, C-symmetry allows to write the —x density as:

e
PP (x) = "ngn W) [P+ QL] =—a () (@)

This relation shows that opposite x-sign densities cancel each other out:

PP = Y [P+ ()] =0 (28)

rk=+1,42...

4Wichmann and Kroll. "Vacuum polarization in a strong Coulomb field." Phys. Rev. 101.2 (1956): 843.
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Numerical vacuum polarization density

We shall now use RKB and C-DKB to compute the VP density

(%)

47rr2 ngn IN [Plzm+len] ) (29)

where n = n; + ng is the total number of basis functions, P; ., Q; ,. are the large
and small radial Dirac wavefunctions, associated with the energy-level E; ..

Qualitative computations

We shall first present RKB and C-DKB computations, and focus on:

@ Furry's theorem obedience (in the free problem).
@ The large distance behavior (in the atomic problem).

Quantitative computations

|

Subtract the VP density that is linear in the nuclear charge (containing the
Uehling effect + divergence), and compare our results with the more
sophisticated computation.




A sign of C-symmetry violation: VP density with j-basis

We have done two free (Z=0) calculations using uranium j-basis:
o RKB A\ (C-symmetry is violated):
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VP density with j-basis

We have done two free (Z=0) calculations using uranium j-basis:
o RKB A\ (C-symmetry is violated):
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JIv
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: 2 VP
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RKB vs C-DKB: 1e uranium atom at large distances

RKB A\ (C-symmetry is violated):

— PR . — P +pf)

0.04 0.06 008 010 012 014 0.02 004 0.06 0.08 010 012 014




RKB vs C-DKB: 1e uranium atom at large distan

RKB A\ (C-symmetry is violated):

,AL a0
- — r’(pYi+p¥Y)
N A
DKB ¢ (C-symmetry is obeyed):
! Allao

" — r2(p¥§ +p¥%)

002 008 006 008 30} 35 01a
r(a.u.)



The linear vacuum polarization is divergent!

The total VP density can be expanded in powers of the external scalar potential ¢ (x) as

P () = S [ d TG (i) = A0 00+ [ 0]+ P2 ()4 (30)
Cr

Furry's theorem
Diagrams with free electron loops with odd number of vertices are discarded.
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The linear vacuum polarization is divergent!

The total VP density can be expanded in powers of the external scalar potential ¢ (x) as

P () = S [ d TG (i) = A0 00+ [ 0]+ P2 ()4 (30)
Cr

Furry's theorem
Diagrams with free electron loops with odd number of vertices are discarded.

VP VP, 0 VP, 1 VP, 2
o

Pt (x) (linear in Z) is divergent!

4 .
P00 = [ (;7;1)46‘%"'*ﬂ°°(q)¢(q). (31)

The source of divergence comes from the polarization tensor (photon self-energy)

€ (2mh)* P2 — m2c2 +ic | (p—q)® — m2c2 + ie




On the infinite: by David Hilbert

In summary, let us return to our main theme and draw some conclusions
from all our thinking about the infinite. Our principal result is that the
infinite is nowhere to be found in reality. It neither exists in nature nor
provides a legitimate basis for rational thought - a remarkable harmony
between being and thought. In contrast to the earlier efforts of Frege and
Dedekind, we are convinced that certain intuitive concepts and insights
are necessary conditions of scientific knowledge, and logic alone is not
sufficient. Operating with the infinite can be made certain only by the
finitary.

The role that remains for the infinite to play is solely that of an idea -
if one means by an idea, in Kant’s terminology, a concept of reason
which transcends all experience and which completes the concrete as a
totality ~ that of an idea which we may unhesitatingly trust within the
framework erected by our theory.

Hilbert, D. On the infinite (1984). In P. Benacerraf and H. Putnam (Eds.),
Philosophy of Mathematics: Selected Readings (p183-201). Cambridge University Press,



Subtracting the linear vacuum polarization

The VP density that is linear in Z is divergent. Rinker and Wilets® suggested to remove
the linear part through

P2 (x: Z2) = p¥ (x; Z) — lim prP (x: )
50 0

®Rinker Jr, G. A, and L. Wilets. Phys. Rev. A 12.3 (1975): 748.
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Subtracting the linear vacuum polarization

The VP density that is linear in Z is divergent. Rinker and Wilets® suggested to remove
the linear part through
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50 0
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expressions of the free and atomic Green's function [Wichmann and Kroll], and the

shell nuclear model (hollow sphere).
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Subtracting the linear vacuum polarization

The VP density that is linear in Z is divergent. Rinker and Wilets® suggested to remove
the linear part through

PZZ3 (x;Z2) = pL’P (x;Z) = lim prP (x: )
50 0

@ Mohr et alb computed this density for uranium 238 (Z=92) using exact
expressions of the free and atomic Green's function [Wichmann and Kroll], and the

shell nuclear model (hollow sphere).
@ We numerically compute this density, with two different nuclear models, and two
basis sets respecting the C-symmetry (C-DKB):
@ Point nucleus with:
@ 16G basis (Dyall 1s2.7z7).
@ 30G basis: 30 even-tempered exponents.
@ Shell nucleus with:
@ 16G basis.
@ 30G basis.
®Rinker Jr, G. A, and L. Wilets. Phys. Rev. A 12.3 (1975): 748.
®Mohr, P. J., Plunien, G., and Soff, G. (1998). Phys. Rep. 293(5-6), 227-369.
"Kenneth G Dyall. Basis sets for the 1s> ground states of two-electron rare gas ions




Non-linear VP density: C-DKB + point nucleus + 16G basis

Non-linear vacuum polarization density: r(pY>" + p"»"), for k=1 and n= 3

at small distances at large distances
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Non-linear VP density: C-DKB + shell nucleus 4+ 16G basis
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Non-linear VP density: C-DKB + shell nucleus 4+ 30G basis

Non-linear vacuum polarization density: r(pY>" + p"»"), for k=1 and n= 3

at small distances at large distances
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Non-linear VP density in RKB: Gauss nucleus 4+ 16G

Non-linear vacuum polarization density: r?(pV"" + p¥*."), fork=1and n=3

at small distances at large distances
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Non-linear VP density in RKB: Gauss nucleus 4+ 16G

Non-linear vacuum polarization density: r?(pV"" + p¥*."), fork=1and n=3

at small distances at large distances
0.000 - 1073
vir3) ] Ll
-0.002 /
107
—0.004
107°
~0.006
~0.008
107
-0.010
1077
-0.012
—— Mohr et al. (Shell nucleus) —— Mohr et al. (Shell nucleus)
—— Current work (16G basis with Gauss nucleus) —— Current work (16G basis with Gauss nucleus)
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@ RKB favors positive- on negative-energy solutions

@ RKB violates the C-symmetry. We thus have:
VPO VP2 VP4 20

K 7pl'i 7p:‘i 9t




Vacuum polarization density: (Za)-expansion

The VP density is related to the Dirac-Coulomb Green's function by:

e

PVP(X):47T2IZ|K|/C dzTr[Gy (e, 1 2)] | (33)




Vacuum polarization density: (Za)-expansion

The VP density is related to the Dirac-Coulomb Green's function by:

P (x) = o

ypcy Z |&| /CF dzTr[Gy (e, 1 2)] | (33)
This Green's function satisfies the following Dirac equation:

Z [—l—mc2 —ep(r)—z —hc [6% + 1_—”]

x
K

he [airx + ”—"] —mc® —ep(r) — z Ily

x

] Gu (re,ry;2) = Mh’ (34)

and can be written as:

i LL LS
G (rx, 1y 2) = Z Y,k () Y (1y) _ Z = 17 . |:Gn§n (re,ry) Gnsn (rx ry)} , (35)

En,nfz Gn,eﬂ ("M’y) G/is (rX,r}’)

Gr?fg (rX>r}’):Rr?,n(rX)Rré,m(r,V)7 a,f=1L,S. (36)

n



Vacuum polarization density: (Za)-expansion

The VP density is related to the Dirac-Coulomb Green's function by:

e

VP _ A
P () = Zﬁ: |r| /CF dzTr[Gy (r ri2)] | (33)
This Green's function satisfies the following Dirac equation:

Z [—l—mc2 —ep(r)—z —hc [6% + 1_—”]

x
K

he [airx + ”—"] —mc? —ep(r) —z

x

(e —n)

] Gi (s ry: 2) = P 1, (34)
xTy

and can be written as:

i LL LS
G (rx, 1y 2) = Z Y,k () Y (1y) _ Z = 17 . |:Gn§n (re,ry) Gnsn (rx ry)} , (35)

En,nfz Gn,eﬂ ("m’y) G/is (rX,r}’)

Gr?fg (rX>r}’):Rr?,n(rX)Rr?,~(r,V)7 a,f=1L,S. (36)

n

The total Green's function can be expanded as:

(e o)
Gi (1, ry; z) = Gg (rx, rysz) + e/ rfdruGg (rey rus 2) & (ru) Gg (ru, ry; 2)
0
o oo (37)
+e2/ rfdru/ rvzdrng (res rus 2) @ (ru) Gg (ruyr;z)o(r) Gg (rv,ry;z)—l-O(eG) ,
0 0

where G0 (ry, ry; z) = limz_,0 G (1, 1y; 2).-



VP density: (Za)-expansion

The full vacuum polarization density can be thus written as a sum:
PP )= S [ TG (i 2] = 00 (0 4 PV () + PR () 4 (38)
Cr

VP
Pk

VP, 1




VP density: (Z

The full vacuum polarization density can be thus written as a sum:

elk
PP )= S [ TG (i 2] = 00 (0 4 PV () + PR () 4 (38)
Cr
7
Iy
= + + + -
The associated individual VP densities are given by:
pYP0 (x) = i’j dzTr [Gg (re, 1 z)] (39)
Amsi Jep
VP,1 e |kl [ ‘ 0 0
prlt(x) = - rodrug (ru) dz Tr [Gﬁ (rx, rus 2) G2 (ru, 1 z)} (40)
472j 0 Cr
: (41)
We shall use the numerical free Green's function expressionT
Ot r,i \Ix N
Gg (re,1y; 2) :ZM (42)

i=1 Eri—z

to derive the n-potential VP density expression: pXP’" .



(Za)" VP density in the finite basis

The n-potential VP density:

n n+1 ‘K‘ 2
o) = gt [T o). [T e ()
(43)
X dz Tr [G (re, r1; 2) G (r,r;z).. (r,, 1, ) z)G (r,7,rx;z)] ,
Cr
can be written as
e™1 k|

P (x) = D o (1)

Q1,541 (44)

K K K K
x V041a2 Vazas o Van 1%n Vanan+1 I("’ K)

A2r, i



(Za)" VP density in the finite basis

The n-potential VP density:

n n+1 ‘K‘ 2
o) = gt [T o). [T e ()
(43)
X dz Tr [G (re, r1; 2) G (r,r;z).. (r,, 1, ) z)G (r,7,rx;z)] ,
Cr

can be written as

o (x) =

en+1 |H|

Z sgn+1a1 (rX)

Q1,541 (44)

K K K K
x V041a2 Vazas . Van 1%n Vanan+1 / ("’ K)

where V5 and sj, (r) are given by

A2r, i

Vi = / dr (1) b (1) 23 (1) (45)

S5 (1) =@ . (N @an(r). (46)



(Za)" VP density in the finite basis

The n-potential VP density:

n+1
o= / Rdné(n).. / b (1)

X . dzTr [G2 (e, r1i2) GE (r1, r2; 2) ... GS (a1, 103 2) G (1, 1 2)] “

r

can be written as

=SS ()
X ag,enanta (44)
where V5 and sj, (r) are given by

Vis = / dr 6 (1) el (1) (). (45)
S5 (1) =@ . (N @an(r). (46)

We are thus left with the evaluation of the contour integral

I(n, k)= /C dz ! e ! =? (47)

Eay v —z Eapiaw —2




(Za)" VP density in the finite basis
The n-potential VP density:

n+1
o= / Rdné(n).. / b (1)

(43)
X dz Tr [G (re, r1; 2) G (r,r;z).. (r,, 1, Z) G (rn, rx;z)] ,
Cr
can be written as
N en+1 K
=S s ()
X ag,..app (44)
x V§1a2 ngas o Vc':n 1%n Vgnan+1
where V5 and sj, (r) are given by
Vi = / dr (1) b (1) 23 (1) (45)
Sha (1) =@k . (1) @an (). (46)
We are thus left with the evaluation of the contour integral
I(n, k)= / dz ! e ! =? (47)
Cr Eayw —2 4

{0ar (r), Ea s} are the eigensolutions of the free radial Dirac

equation.



(Za)" VP density contour integral

The remaining contour integral is given by

1 1
/ = d e =7 48
(n’ H/) Cr ‘ Eal,’{ —Z Eo‘n+la’i —Z ( )

ﬁ
+me? R(z)

Figure: Dirac eigenvalues (black dots), and Feynman contour (Cg: red path).




(Za)" VP density contour integral

The remaining contour integral is given by

1 1
/ = d e =7 48
(n’ H/) Cr ‘ Eal»’{ —Z Eo‘n+la’i —Z ( )

ﬁ
+me? R(z)

Figure: Dirac eigenvalues (black dots), and Feynman contour (Cg: red path).

—mc

After a lengthy calculation, we find

g L 1 (=) S (—1) " sgn (E) [Tjpsi ks jupi (Ei — Ei)
Cr E; -z o Eny1— 2z H7:1 Hm>/ (EI - Em)




(Za)" VP density contour integral

The remaining contour integral is given by

1 1
/ = d e =7 48
(n’ H/) Cr ‘ Eal»’{ —Z Eo‘n+la’i —Z ( )

ﬁ
+me? R(z)

Figure: Dirac eigenvalues (black dots), and Feynman contour (Cg: red path).

After a lengthy calculation, we find

g L 1 (=) S (—1) " sgn (E) [Tjpsi ks jupi (Ei — Ei)
Cr E; -z o Eny1— 2z H7:1 Hm>/ (EI - Em)

We now have the exact expression of the (Za)"” VP density!




Furry's theorem in the C-symmetric finite basis

The n-potential VP densities associated with £« are:

entl |,{|
A= 3 s (5) Vifae - Vilfupia! (0 44) (49)
Q1,5 Qnt1
entl |N| _ _ _
p,ihi (X) = 47’I’2I’Xi Z soz,,’ihoq (rX) Valljlz et Va,,’ZszrlI (n7 7’{) (50)

X141

8Furry, Wendell H. "A symmetry theorem in the positron theory." Phys. Rev. 51.2 (1937): 125.



Furry's theorem in the C-symmetric finite basis

The n-potential VP densities associated with £« are:
entl |,{|

Phe(X) == D sar ey (b)) Vidfas o Vil 1 (0 45) (49)
Am=ryi a1,..,Qn41
entl |N|

p,ihi (X) = 2 - Z oz,,+1,o¢1 (rX) alaz . Va,,’ZszrlI (n7 7'{) (50)
Amsrx Q1,041

.. . Eq — =—E

If the basis is C-symmetric, then: { ~" wrr o and:
Pa,—k () = O1Po,k (r)
- - 1
Voclnaz V:1Ka27 a,,’jud (o2 (rX) a,,+1 (%] (rX)7 ‘ I(n7 _K/) = (_1)”+ I(n7 +K’) (51)

8Furry, Wendell H. "A symmetry theorem in the positron theory." Phys. Rev. 51.2 (1937): 125.



Furry's theorem in the C-symmetric finite basis

The n-potential VP densities associated with £« are:

entl |,{|
)= S S (0 Vi Vi () (49)
X' ag,..0ng

n et x| —x "
P—k (X) = An2rii Z soz,,+1,o¢1 (rx) alaz . Vanan+1l (n7 7'{) (50)

T g, an
.. . E. _ - _E

If the basis is C-symmetric, then: { ~" wrr o and:
$a,—x (r) = 0o1pa,x(r)

Va_lnaz - V:1Ka27 o?,,’il (o2 (rX) a,,+1 (%] (rX)7 ‘ I(n7 _K/) = (_1)”+1 I (n7 +K’) (51)

These results lead to obedience of the Furry theorem?®:
2p7% (x) for odd n

0 for even n

\ o (x) + 7 (x) = { (52)

8Furry, Wendell H. "A symmetry theorem in the positron theory." Phys. Rev. 51.2 (1937): 125.



Furry's theorem in the C-symmetric finite basis

The n-potential VP densities associated with £« are:

entl |,{|
(= S St () Vi Vil (2 8) (49)
X' ag,..0ng

n en+1 |’$| — K K K
P—x (X) = 4 2 - Z soz,,+1,o¢1 ( ) Valaz . VananJrlI(n: 7'{) (50)

T g, an
.. . E., _ = _E

If the basis is C-symmetric, then: { ~" e and:
Pa,—k (r) = 01¥a,k (r)

Va_lnaz - V:1Ka27 o?,,’il (o2 (rX) a,,+1 (%] (rx)7 ‘ I(n7 _K/) = (_1)”+1 I (n7 +K’) (51)

These results lead to obedience of the Furry theorem?®:
bl X
\ / n
\ / n n B {2p,€ (x) forodd n

pr (x) + 0l (x) =
Two things to know:

52
0 for even n (52)

@ In a C-symmetric basis, even orders of VP
AN density vanish (as in reality).

J @ One needs to calculate one « sign VP density.

8Furry, Wendell H. "A symmetry theorem in the positron theory." Phys. Rev. 51.2 (1937): 125.
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Conclusions

@ Kinetic balances and C-symmetry:
® RKB can be made C-symmetric using free-particle solutions as a basis
for Coulombic problems.

® DKB can be made C-symmetric without being constrained to a
particular type of basis functions.

@ The use of non-C-symmetric basis yields non-physical VP results.

© The use of a C-symmetric basis leads to a VP density that is
@ In line with Furry's theorem
® Vanishing at relatively shorter distances
© In good agreement with the complicated many-potential (WK) density




Next goals

© Compute individual odd-order VP densities pf. (x) using freshly derived results and
check their convergence to the total p¥F (x) (ongoing).

© Compute hydrogenic energy-shifts associated with the VP process (ongoing).
© Solve the self-consistent VP problem.
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Near future goals

© Extend this approach to the complicated (non-local) self-energy problem: design a
numerical regularization/renormalization scheme (ongoing project).

@ Include the basis-computed e?-order VP and SE corrections in the simplest
many-body approximation (Hartree-Fock).




Perspectives

Next goals

© Compute individual odd-order VP densities pf. (x) using freshly derived results and
check their convergence to the total p¥F (x) (ongoing).

© Compute hydrogenic energy-shifts associated with the VP process (ongoing).
© Solve the self-consistent VP problem.

|

Near future goals
© Extend this approach to the complicated (non-local) self-energy problem: design a
numerical regularization/renormalization scheme (ongoing project).

@ Include the basis-computed e?-order VP and SE corrections in the simplest
many-body approximation (Hartree-Fock).

|

Far future goals

@ Extend our machinery to more sophisticated (correlated) methods.
@ Extend the basis-set-computed e? VP and SE to e"-orders with n > 2.
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Renormalization

Q: How to get rid of your divergences?
A: As you do with dust:
© Swipe it under the rug (rug = bare physics).
@ Define the whole system as your new rug (observed physics).

© Make Dirac angry

Hence most physicists are very satisfied with the situation. They say:
“Quantum electrodynamics is a good theory, and we do not have to
worry about it any more.” I must say that I am very dissatisfied with the
situation, because this so-called “‘good theory” does involve neglecting
infinities which appear in its equations, neglecung them in an arbltrary
way. This is just not ibl ibl in-
volves neglecting a quantity when it turns out to be small—not neglec-

ting it jusl because it is inﬁnilelx great and you do not want it!

math

Dirac, P. A. M. "Directions in physics. Lectures delivered during a visit to Australia
and New Zealand, August/September 1975." (1978).



B1: Gaussian bases with RKB

The spherical Gaussian basis functions are:

T = rlatal+z oG (53)
h d KR
S L

@ /-basis: Same exponents for same /-functions.
@ j-basis: Same exponents for same j-functions.

k | f-basis | j-basis

s1 | —1 ° °
2

pr | +1 ° °
2

p3 | —2 ° °
2

ds | +2 ° °
2

ds | —3 ° °
2

Table: Same color means same list of exponents



B1: Gaussian bases with DKB

The spherical Gaussian basis functions are:

ﬂ’é’i — a3z (55)

775,; S I P (56)
Le [ m [e]1E [ m [£])[¢H]C0]
-1 10 % ° ° -1 10 % ° ° -1 10 % ° °
+1 11 % ° ° +1 |1 % ° ° +1 1 % ° °
2[1]s5]e]ef[2]1]5]e[e][2[1]5]e]e
+2 1|2 % ° ° +2 | 2 % ° ° +2 12 % ° °
323 e 323 e e[ -3]2][3]e ]

(a) Exponents in C-DKB  (b) Exponents in ¢-bases (c) Exponents in j-bases



B2: Uranium exponents

|

|

16G (7z basis)

|

30G

5.6653086E+07

16

1.1844662E4-05

3.7547139E+07

17

7.8501137E+04

2.4884569E+07

18

5.2027052E+04

1.6492382E4-07

19

3.4481210E+04

1.0930415E4-07

20

2.2852608E+04

7.2441918E+4-06

21

1.5145689E4-01

4.8011272E4-06

22

1.0037887E+4-04

3.1819730E+06

23

6.6526640E+03

2.1088698E+06

24

4.4090890E4-03

1.3976648E4-06

25

2.9221475E4-03

== —.
HOKOOO\I@U‘I-PUOI\)!—'

9.2630991E+-05

26

1.9366690E4-03

[y
N

6.1391689E+4-05

27

1.2835379E4-03

[y
w

4.0687673E+05

28

8.5067164E+02

[l
S

2.6965975E+4-05

29

5.6378722E+-02

[
1 | 5.66530865E+407
2 | 1.50715339E+-07
3 | 5.14926020E+-06
4 | 1.95346438E+06
5 | 8.11107677E+05
6 | 3.55863972E4-05
7 | 1.63626745E4-05
8 | 7.76952979E4-04
9 | 3.78943130E+04
10 | 1.88681659E4-04
11 | 9.56625072E+-03
12 | 4.92635288E+-03
13 | 2.57221011E+03
14 | 1.35785927E4-03
15 | 7.19791611E+02
16 | 3.73653024E4-02

[ary
(6]

1.7871846E4-05

30

3.7365302E+402




B3: Kinetic balances

The radial Dirac equation can be written as:

h 1 d &
Qn,n = - |: =+ :| ’Dn,H (57)
mc 1 + % dr r
h 1 d &
Pn/{ = 0 TF |7 — = n,k-
) mc1 _ ep+Enk |:dr r:| Q ’ (58)

mc2



B3: Kinetic balances

The radial Dirac equation can be written as:

h 1 d &
Q= ———2F— [ + ] Py (57)
mc1+% dr r
h 1 d &k
Pn/{ = 0 TF |7 — = n,Kk.
’ mc1 _ e%0+’52n,~ [dr r] @n, (58)
mc

Atomic Balance (AB):

AB _ ch d K
QK T 2mc2tep [E + 7} Pﬁ




B3: Kinetic balances

The radial Dirac equation can be written as:

h 1 d &
Qnﬂ“: = . eo+E. . |: + :| anﬁ/ (57)
mc 1 + % dr r
h 1 d &
Pop=——"—"7""5—|——— n,k-
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mc
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B3: Kinetic balances

The radial Dirac equation can be written as:

h 1 d K
O = ey 4 eotEn [dr - ] Prn (57)
mc
h 1 d
Pn,h? - mcﬁ |:dr r:| in{ (58)
mc?
] 10 ‘ ‘ - ‘ . Atomic Balance (AB):
002 001 T T oL @ - P -
s - Q16.)(—31C| QAB 2mcc2+e<p [dr + 7} Pﬁ
¢ o,
Restricted Kinetic Balance (RKB):
-y RKE — _h [ d
) ) Q ~ 2mc [dr + %] P"Q

Figure: AB and RKB approxs of the le
radon ground state small component.



B3: Kinetic balances

The radial Dirac equation can be written as:

h
Qn,n =
mci 4+
h
Pn,/{ =
mci—
1F B
Y ooz 001 o oo oo @)
o Qexacl
. 11
s~ vaa
i
—ore
s
5

Figure: AB and RKB approxs of the le

radon ground state small component.

1 d K

T eptEnn [dr + r:| Pnx (57)
mc2
1 d

{_ eotEns [dr r] Qn (58)

mc2

Atomic Balance (AB):

AB _ ch d K
Q T 2mc2tep [E + 7} Pﬁ

Restricted Kinetic Balance (RKB):
QFE = L [£+ 2] P,

2mc r

Inverse Kinetic Balance (IKB):
P = ame Lar — 7] Qo




B4: Vacuum polarization density: (a.Z)-expansion

The VP density is related to the Dirac-Coulomb Green's function by:
VP _ ¢ :
P = gy SN [ TG i) L (s9)

This Green's function satisfies the following Dirac equation:

O(r—ry)
Gu(re,ry;2) = —>—221,, (60
2 he [ + =] —mcz—ecb(rx)—z] (o ie) = = e (00)

x

tme —ep(n) 2z —he [ + 2]

x

and can be written as:

i
G (r,ry;z) = Z M

E,.—z

Using the well-known identity:
1 1 1.1 1. 1.1
A-B AT APataBaBat (61)

the total Green's function can be expanded as:
Ge = G2+ GlepGY  + ... (62)

We shall now plug this result in the first equation.



B5: VP density: (aZ)-expansion in the finite basis problem

The full vacuum polarization density can be thus written as a sum
VP

dz Tr (G (ry i 2)] = pi 2 (X) + o () + o2 (%)
Cr

(63)

Individual VP densities are given by:

K
pXP,o (x) = 47!_2| / dz Tr (rx, I z)]

(64)
e K
pXPJ (X): 4 |2| ru2dru¢(ru)
Tl 0

. dz Tr [G (re, ru; 2) G2 (ru, s z)] (65)

Green's functions G, and G are constructed from numerical solutions through:

Ny t
G (s ryi2) = Z?/)n,n(ErX)"in,; (ry)7 Go (re,ry;2) = @ni (1 Sonn(r}/)
n=1 me

E?, —z ’




B6: VP density in the finite basis

The zero-potential VP density:

dz
d Tr [GO (rx>rx Z) 471_2 Z@an(rx @a“(rx)/ EO
F o,k

VP, e|l€|
*(x) =

" T 4r? c -z
The two scenarios of E, . are represented in the following figures:
3(2) S(2)
R(z) Eo R(z)
Using Cauchy's integral formula (residue theorem), one can show that
(backup slides):
1 .
/ dz E()i— = 17Tsgn (Eé),H) (66)

This leads to the following result:

K
PP (x) = <1 s (EL) e () pan(s), (6



L VP density in the finite basis

The one-potential VP density:

2 [e%S)
il ru2dru¢> (ru) dz Tr [Gg (r, ru; 2) Gg (Fuy re; z)} (68)

VP,1
1y —
P (X)) = ; .

The two Green's functions expansions contribute with two denominators,
integrating to (backup slides):

1—sgn(E9 , EQ
1 1 gn (Ea nES. .
dz —; o =i ( a ) (69)
Cr Eoc,n -z Eﬁ,n -z |E27,€| + ‘E,g,m
Integrating over the red variable r, gives the following 1-potential VP density:
0 0
€2 || . . 1—sgn ED“NE[Mc
PPt (x) = e D sha(r) V(;,ﬁ# (70)
4 o,B {ng“i| + ‘EO,K,
where V[ 5 and sj , (r) are given by:
it 2
G = [ PRaro ) el (e (). (1)

K

Sha (1) =0k, (1) @an (1) (72)



B8: Contour integrations 1

1
The one-pole integral: dz =7 (73)
Cr i —Z

Positive pole case

Imf2]
Re[z]
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B8: Contour integrations 1

1
The one-pole integral: dz =7 (73)
Cr i —Z

Positive pole case Negative pole case

Im(z] Im(z]

Relz] E, Relz]

Imfz]

Re[z]

Re[z]




B8: Contour integrations 1

1

The one-pole integral: dz =7 (73)
Cr i —Z
Positive pole case Negative pole case
Imf2] Imfz]
Relz] E, Relz]
E;,
{ 4
Imz]
Im[z]
Re[z]
Re[z]
The final result is: / dzE = imsgn (E; ) (74)
Cr [N



B9: Contour integrations 2

. 1 1
The two-pole integral: d. =7 75
P ¢ Cr ZEim—ZEj,n—Z (7%)

Same energy signs




B9: Contour integrations 2
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The two-pole integral: d. =7 75
p g /CF e — (75)

Same energy signs
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B9: Contour integrations 2

The two-pole integral: /
Cr

1 1
d. =7
ZE,-,N —zE .-z

Same energy signs

Opposite energy signs

E;\ EM

3(2)

e %(Z)

(75)

@
=

e §R(Z)

Ei.E
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B9: Contour integrations 2

. 1 1
The two-pole integral: d. =7 75
p g /CF e — (75)

Same energy signs Opposite energy signs
3(2) 3(2)
B B | ——p Ew | gz
Ej
3(2) 3(2)
—R(z) Lj, —R(z)
Eiy Ej. Eip




B9: Contour integrations 2

. 1 1
The two-pole integral: =7
P g . dz E. ZE. 2 (75)
Same energy signs Opposite energy signs
3(2) 3(2)
B B | ——p Ew | gz
Ej
3(2) 3(2)
) Eiv | =%
Eiy Ej s Eix

= H z 76
Ein*ZEj,l-c*Z m ‘Eiﬁ +|EJ7V~| ( )

)

The final result is: / dz 1 1 . 1 —sgn(E«Ej.)
Cr




B10: VP divergence with Z=92 point nucleus

(Y] +pyh)

RKB VP density for Z=92 with point nucleus
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B11: VP divergence with Z=92 Gauss nucleus

RKB VP density for Z=92 with Gaussian nucleus
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B12: a(Za) effective VP potential

In the point-nucleus problem, the Uehling potential is found to be

oint _ 2al Ze 2
Plen. (X) = 37| Frcors K1 (ih() (77)
_ - —x¢ 1 1 /2
Kl(X)— ) d(e ?+2<4 C -1 (78)

For a general nucleus, with an arbitrary normalized nuclear distribution
p"< (x), this potential becomes

P (x) = / Pyo™e (x — y) 9 (y) (79)

Figure: The o (Za) vacuum polarization process (Uehling)




B13: a(Z«)® effective VP potential

The first non-linear vacuum polarization potential is given by

i Z e 1
ot (0 = (Za)| 2| [T e
0

dmegry

X {—1127r2\/t2T19(t— 1)+/0t dxmff(x)}

Figure: The a (Za)® vacuum polarization process (Wichmann and Kroll).



3 effective VP potential

Functions f (x) and ¢ (x) are given by

_ 2 2 2 1—x° 2 1+4x 1-x* ,14x
f(x) 2xt) (x*) — xlog”® (1 —x7) + 3 log (1 x)logl_X+ ™ log -
2—x? 3—-2x*  1+x
LX) 1-— | — 1
+x(1 )og( x)+1 7 log T— 3x, x<
1 3x +1 1 1 2x* -1 1
=5 () - H;)* ( ) e (-3)
2
+Iog + —(2x—1)log X+1 3 +1|0g2X+1
4x x—1
2
_2|ogxlog<1 ) +1Iogx|ogx+1+
2x X —

1
2_
XIog(l—%)—i—PX +2 3x"-2
X

X

o= [ axelzx) Z% l<x<1
0

x2—1

x+1
Xz_l]logx_1+3logx—3, x>1,
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