Valence-hole excitation in a closed shell system: QED approach

Romain Soguel
Andrey V. Volotka, Stephan Fritzsche

October 25, 2022

HI JENA

HELMHOLTZ
Helmholtz-Institut Jena

Outline

(1) Introduction
(2) Two-time Green's functions
(3) Valence-hole Green's function
(4) 1st order corrections
(5) Different vacua and links
(6) Conclusion

Motivation

Why interest in highly charged ions?

- Provide stringent test on bound state QED
- Precise determination of physical constants (α, m_{e}, g_{μ}, \ldots)
- Test of Standard Model and constraint new physics

Motivations

- Application in atomic clocks for valence-hole transitions in $\mathrm{B}^{+}, \mathrm{Al}^{+}$, In^{+}, and Tl^{+}ions
- Possible explanation of the disagreement in oscillator-strength ratio in Ne-like Fe
A. D. Ludlow et al., Rev. Mod. Phys. 87, 637 (2015)
S. Kühn et al., https://arxiv.org/abs/2201.09070

Motivations

- Application in atomic clocks for valence-hole transitions in $\mathrm{B}^{+}, \mathrm{Al}^{+}$, In^{+}, and Tl^{+}ions
- Possible explanation of the disagreement in oscillator-strength ratio in Ne-like Fe
- Natural next step after previous works (single valence and single hole cases)
- Devise an ab initio derivation of BSQED perturbation theory for a valence-hole excitation in a closed shell.
A. D. Ludlow et al., Rev. Mod. Phys. 87, 637 (2015)
S. Kühn et al., https://arxiv.org/abs/2201.09070

Emergency exit?!

https://www.linkedin.com/pulse/de-reis-van-held-red-pill-blue-edward-stronach-hardy

4-point Green's function

2-body system \rightarrow generic 4-point Green's function:
$G\left(t_{1}^{\prime}, \mathbf{x}_{1}, t_{2}^{\prime}, \mathbf{x}_{2}, t_{1}, \mathbf{y}_{1}, t_{2}, \mathbf{y}_{2}\right)=\langle 0| T\left[\psi\left(t_{1}^{\prime}, \mathbf{x}_{1}\right) \psi\left(t_{2}^{\prime}, \mathbf{x}_{2}\right) \bar{\psi}\left(t_{2}, \mathbf{y}_{2}\right) \bar{\psi}\left(t_{1}, \mathbf{y}_{1}\right)\right]|0\rangle$

4-point Green's function

2-body system \rightarrow generic 4-point Green's function:
$G\left(t_{1}^{\prime}, \mathbf{x}_{1}, t_{2}^{\prime}, \mathbf{x}_{2}, t_{1}, \mathbf{y}_{1}, t_{2}, \mathbf{y}_{2}\right)=\langle 0| T\left[\psi\left(t_{1}^{\prime}, \mathbf{x}_{1}\right) \psi\left(t_{2}^{\prime}, \mathbf{x}_{2}\right) \bar{\psi}\left(t_{2}, \mathbf{y}_{2}\right) \bar{\psi}\left(t_{1}, \mathbf{y}_{1}\right)\right]|0\rangle$

- It contains all the information about the two-particle dynamics in presence of the nuclear Coulomb field.
- It is enough to consider a two-time Green's function.

Usual two-time Green's function

Shabaev's equal-time choice: $t_{1}^{\prime}=t_{2}^{\prime}=t^{\prime}$ and $t_{1}=t_{2}=t$

$$
G\left(t^{\prime}, \mathbf{x}_{1}, t^{\prime}, \mathbf{x}_{2}, t, \mathbf{y}_{1}, t, \mathbf{y}_{2}\right)=\langle 0| T\left[\psi\left(t^{\prime}, \mathbf{x}_{1}\right) \psi\left(t^{\prime}, \mathbf{x}_{2}\right) \bar{\psi}\left(t, \mathbf{y}_{2}\right) \bar{\psi}\left(t, \mathbf{y}_{1}\right)\right]|0\rangle
$$

Usual two-time Green's function

Shabaev's equal-time choice: $t_{1}^{\prime}=t_{2}^{\prime}=t^{\prime}$ and $t_{1}=t_{2}=t$

$$
G\left(t^{\prime}, \mathbf{x}_{1}, t^{\prime}, \mathbf{x}_{2}, t, \mathbf{y}_{1}, t, \mathbf{y}_{2}\right)=\langle 0| T\left[\psi\left(t^{\prime}, \mathbf{x}_{1}\right) \psi\left(t^{\prime}, \mathbf{x}_{2}\right) \bar{\psi}\left(t, \mathbf{y}_{2}\right) \bar{\psi}\left(t, \mathbf{y}_{1}\right)\right]|0\rangle
$$

Its spectral representation reveals poles only for pure electron (charge 2e) or positron (charge $-2 e$) states contributing to A and B respectively in the \mathcal{N} summation.

$$
\hookrightarrow g_{\alpha, i_{1} i_{2} j_{1} j_{2}}(E)=\sum_{\mathcal{N}} \frac{A_{i_{1} i_{2} j_{1} j_{2}}}{E-E_{\mathcal{N}}+i \varepsilon}-\sum_{\mathcal{N}} \frac{B_{i_{1} i_{2} j_{1} j_{2}}}{E+E_{\mathcal{N}}-i \varepsilon}
$$

Another equal-time choice

Let's select $t_{1}^{\prime}=t_{1}=t$ and $t_{2}^{\prime}=t_{2}=t^{\prime}$

$$
G\left(t, \mathbf{x}_{1}, t^{\prime}, \mathbf{x}_{2}, t, \mathbf{y}_{1}, t^{\prime}, \mathbf{y}_{2}\right)=\langle 0| T\left[\psi\left(t, \mathbf{x}_{1}\right) \psi\left(t^{\prime}, \mathbf{x}_{2}\right) \bar{\psi}\left(t^{\prime}, \mathbf{y}_{2}\right) \bar{\psi}\left(t, \mathbf{y}_{1}\right)\right]|0\rangle
$$

Similar Green's function investigated in the literature:

- Logunov and Tavkhelidze, Quasi-optical approach in quantum field theory (1963)
- Fetter and Walecka, Quantum Theory of Many-Particle Systems (1971)
- J. Oddershede and P. Jørgensen, An order analysis of the particle-hole propagator (1976)
- C-M. Liegner, On the poles of the particle-hole Green's function (1981)

Towards spectral representation I

2-body TTGF in redefined vacuum framework:

$$
\begin{aligned}
& G_{\alpha}\left(t_{1}, t_{2} ; \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}_{1}, \mathbf{y}_{2}\right)=\langle\alpha| T\left[\psi_{\alpha}\left(t_{1}, \mathbf{x}_{1}\right) \psi_{\alpha}\left(t_{2}, \mathbf{x}_{2}\right) \bar{\psi}_{\alpha}\left(t_{2}, \mathbf{y}_{2}\right) \bar{\psi}_{\alpha}\left(t_{1}, \mathbf{y}_{1}\right)\right. \\
& \left.-\left(\mathbf{x}_{1} \leftrightarrow \mathbf{x}_{2}\right)-\left(\mathbf{y}_{1} \leftrightarrow \mathbf{y}_{2}\right)+\left(\mathbf{x}_{1} \leftrightarrow \mathbf{x}_{2}, \mathbf{y}_{1} \leftrightarrow \mathbf{y}_{2}\right)\right]|\alpha\rangle
\end{aligned}
$$

Towards spectral representation I

2-body TTGF in redefined vacuum framework:

$$
\begin{aligned}
& G_{\alpha}\left(t_{1}, t_{2} ; \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}_{1}, \mathbf{y}_{2}\right)=\langle\alpha| T\left[\psi_{\alpha}\left(t_{1}, \mathbf{x}_{1}\right) \psi_{\alpha}\left(t_{2}, \mathbf{x}_{2}\right) \bar{\psi}_{\alpha}\left(t_{2}, \mathbf{y}_{2}\right) \bar{\psi}_{\alpha}\left(t_{1}, \mathbf{y}_{1}\right)\right. \\
& \left.-\left(\mathbf{x}_{1} \leftrightarrow \mathbf{x}_{2}\right)-\left(\mathbf{y}_{1} \leftrightarrow \mathbf{y}_{2}\right)+\left(\mathbf{x}_{1} \leftrightarrow \mathbf{x}_{2}, \mathbf{y}_{1} \leftrightarrow \mathbf{y}_{2}\right)\right]|\alpha\rangle
\end{aligned}
$$

Steps to carry out:

- Recall for equal time: $\left\{\psi_{a}(t, \mathbf{x}), \psi_{b}^{\dagger}(t, \mathbf{y})\right\}=\delta^{(3)}(\mathbf{x}-\mathbf{y}) \delta_{a b}$,
- Time ordering: $T\left\{\psi(t, \mathbf{x}) \psi^{\dagger}\left(t^{\prime}, \mathbf{y}\right)\right\}=$

$$
\theta\left(t-t^{\prime}\right) \psi(t, \mathbf{x}) \psi^{\dagger}\left(t^{\prime}, \mathbf{y}\right)-\theta\left(t^{\prime}-t\right) \psi^{\dagger}\left(t^{\prime}, \mathbf{y}\right) \psi(t, \mathbf{x})
$$

- Completeness relation : $1=\sum_{\beta}|\beta\rangle\langle\beta|$
- Heisenberg picture: $\psi_{\alpha}(t, \mathbf{x})=e^{i H t} \psi_{\alpha}(0, \mathbf{x}) e^{-i H t}$ with $H=H_{0}+H_{\text {int }}$
- Integral representation $\theta(x)=\lim _{\varepsilon \rightarrow 0^{+}} \mp \frac{1}{2 \pi i} \int d \omega \frac{e^{\mp i x \omega}}{\omega \pm i \varepsilon}$

Towards spectral representation II

Introduce the Fourier transform of G_{α}

$$
\begin{aligned}
& \mathcal{G}_{\alpha}\left(E ; \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}_{1}, \mathbf{y}_{2}\right) \delta\left(E-E^{\prime}\right)= \\
& \frac{1}{2 \pi i} \frac{1}{2!} \int d t_{1} d t_{2} e^{i E t_{1}-i E^{\prime} t_{2}} G_{\alpha}\left(t_{1}, t_{2} ; \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}_{1}, \mathbf{y}_{2}\right)
\end{aligned}
$$

Towards spectral representation II

Introduce the Fourier transform of G_{α}

$$
\begin{aligned}
& \mathcal{G}_{\alpha}\left(E ; \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}_{1}, \mathbf{y}_{2}\right) \delta\left(E-E^{\prime}\right)= \\
& \frac{1}{2 \pi i} \frac{1}{2!} \int d t_{1} d t_{2} e^{i E t_{1}-i E^{\prime} t_{2}} G_{\alpha}\left(t_{1}, t_{2} ; \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}_{1}, \mathbf{y}_{2}\right)= \\
& \frac{\delta\left(E-E^{\prime}\right)}{2!}\left\{\sum_{\beta} \frac{\mathcal{A}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}_{1}, \mathbf{y}_{2}\right)}{E-E_{\beta}+i \varepsilon}-\sum_{\beta} \frac{\mathcal{B}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}_{1}, \mathbf{y}_{2}\right)}{E+E_{\beta}-i \varepsilon}\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
\mathcal{A}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}_{1}, \mathbf{y}_{2}\right) & =\langle\alpha|\left[\psi_{\alpha}\left(0, \mathbf{x}_{1}\right) \bar{\psi}_{\alpha}\left(0, \mathbf{y}_{1}\right)|\beta\rangle\langle\beta| \psi_{\alpha}\left(0, \mathbf{x}_{2}\right) \bar{\psi}_{\alpha}\left(0, \mathbf{y}_{2}\right)\right. \\
& \left.-\left(\mathbf{x}_{1} \leftrightarrow \mathbf{x}_{2}\right)-\left(\mathbf{y}_{1} \leftrightarrow \mathbf{y}_{2}\right)+\left(\mathbf{x}_{1} \leftrightarrow \mathbf{x}_{2}, \mathbf{y}_{1} \leftrightarrow \mathbf{y}_{2}\right)\right]|\alpha\rangle
\end{aligned}
$$

Spectral representation

$$
\mathcal{G}_{\alpha}\left(E ; \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}_{1}, \mathbf{y}_{2}\right)=\frac{1}{2!}\left\{\sum_{\beta} \frac{\mathcal{A}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}_{1}, \mathbf{y}_{2}\right)}{E-E_{\beta}+i \varepsilon}-\sum_{\beta} \frac{\mathcal{B}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}_{1}, \mathbf{y}_{2}\right)}{E+E_{\beta}-i \varepsilon}\right\}
$$

Only consistent zeroth-order $|\beta\rangle$ states:

$$
|\beta\rangle=\left\{|v h\rangle=a_{v}^{\dagger} b_{h}^{\dagger}|\alpha\rangle,|\alpha\rangle\right\}
$$

Presence of poles at the valence-hole excitation energies $E_{v h}$ and $-E_{v h}$ as well as at the zero (vacuum energy). Neutral states!

Towards contour integral formula I

Introduce

$$
\begin{aligned}
g_{\alpha}(E) & =\frac{1}{2!} \int d^{3} \mathbf{x}_{1} d^{3} \mathbf{x}_{2} d^{3} \mathbf{y}_{1} d^{3} \mathbf{y}_{2}: \psi_{\alpha}^{(0) \dagger}\left(\mathbf{x}_{1}\right) \psi_{\alpha}^{(0) \dagger}\left(\mathbf{x}_{2}\right) \mathcal{G}_{\alpha}\left(E ; \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}_{1}, \mathbf{y}_{2}\right) \\
& \times \gamma_{1}^{0} \gamma_{2}^{0} \psi_{\alpha}^{(0)}\left(\mathbf{y}_{2}\right) \psi_{\alpha}^{(0)}\left(\mathbf{y}_{1}\right):
\end{aligned}
$$

and the valence-hole state

$$
\left|(v h)_{J M}\right\rangle=\sum_{m_{v}, m_{h}}\left\langle j_{v} m_{v} j_{h}-m_{h} \mid J M\right\rangle(-1)^{j_{h}-m_{h}} a_{v}^{\dagger} b_{h}^{\dagger}|\alpha\rangle \equiv F_{v h} a_{v}^{\dagger} b_{h}^{\dagger}|\alpha\rangle
$$

Towards contour integral formula II

In second quantization language:

$$
\begin{aligned}
g_{\alpha}(E) \cong & \frac{1}{2!}\left\{\sum_{i, l>E_{\alpha}^{F}, j, k<E_{\alpha}^{F}} a_{i}^{\dagger} a_{l} b_{k}^{\dagger} b_{j}+\sum_{j, k>E_{\alpha}^{F}, i, l<E_{\alpha}^{F}} a_{j}^{\dagger} a_{k} b_{l}^{\dagger} b_{i}\right. \\
& \left.-\sum_{i, k>E_{\alpha}^{F}, j, l<E_{\alpha}^{F}} a_{i}^{\dagger} a_{k} b_{l}^{\dagger} b_{j}-\sum_{j, l>E_{\alpha}^{F}, i, k<E_{\alpha}^{F}} a_{j}^{\dagger} a_{l} b_{k}^{\dagger} b_{i}\right\} g_{\alpha, i j k l}(E)
\end{aligned}
$$

Towards contour integral formula II

In second quantization language:

$$
\begin{aligned}
g_{\alpha}(E) \cong & \frac{1}{2!}\left\{\sum_{i, l>E_{\alpha}^{F}, j, k<E_{\alpha}^{F}} a_{i}^{\dagger} a_{l} b_{k}^{\dagger} b_{j}+\sum_{j, k>E_{\alpha}^{F}, i, l<E_{\alpha}^{F}} a_{j}^{\dagger} a_{k} b_{l}^{\dagger} b_{i}\right. \\
& \left.-\sum_{i, k>E_{\alpha}^{F}, j, l<E_{\alpha}^{F}} a_{i}^{\dagger} a_{k} b_{l}^{\dagger} b_{j}-\sum_{j, l>E_{\alpha}^{F}, i, k<E_{\alpha}^{F}} a_{j}^{\dagger} a_{l} b_{k}^{\dagger} b_{i}\right\} g_{\alpha, i j k l}(E)
\end{aligned}
$$

Matrix element of interest:

$$
\left\langle(v h)_{J M}\right| g_{\alpha}(E)\left|(v h)_{J M}\right\rangle=F_{v_{1} h_{1}} F_{v_{2} h_{2}}\left[g_{\alpha, v_{1} h_{2} h_{1} v_{2}}(E)-g_{\alpha, v_{1} h_{2} v_{2} h_{1}}(E)\right]
$$

with

$$
\begin{aligned}
g_{\alpha, i j k l}(E) & =\int d^{3} \mathbf{x}_{1} d^{3} \mathbf{x}_{2} d^{3} \mathbf{y}_{1} d^{3} \mathbf{y}_{2} \phi_{i}^{\dagger}\left(\mathbf{x}_{1}\right) \phi_{j}^{\dagger}\left(\mathbf{x}_{2}\right) \mathcal{G}_{\alpha}\left(E ; \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}_{1}, \mathbf{y}_{2}\right) \\
& \times \gamma_{1}^{0} \gamma_{2}^{0} \phi_{k}\left(\mathbf{y}_{1}\right) \phi_{l}\left(\mathbf{y}_{2}\right)
\end{aligned}
$$

Contour integral formula

Focusing on \mathcal{A} term along with the contour $\Gamma_{v h}$ surrounding only the pole $E \sim E_{v h}^{(0)}$:

$$
\Delta E_{v h}=\frac{\frac{1}{2 \pi i} \oint_{\Gamma_{v h}} d E\left(E-E_{v h}^{(0)}\right)\left\langle(v h)_{J M}\right| \Delta g_{\alpha}(E)\left|(v h)_{J M}\right\rangle}{1+\frac{1}{2 \pi i} \oint_{\Gamma_{v h}} d E\left\langle(v h)_{J M}\right| \Delta g_{\alpha}(E)\left|(v h)_{J M}\right\rangle}
$$

Diagrams: 1-particle and 2-particle terms

$$
\Delta E_{v h}^{(1)}=\frac{1}{2 \pi i} F_{v_{1} h_{1}} F_{v_{2} h_{2}} \oint_{\Gamma_{v h}} d E\left(E-E_{v h}^{(0)}\right)\left[\Delta g_{\alpha, v_{1} h_{2} h_{1} v_{2}}^{(1)}(E)-\Delta g_{\alpha, v_{1} h_{2} v_{2} h_{1}}^{(1)}(E)\right]
$$

(a)
(b)

$$
\Delta E_{v h}^{(1)}=\Delta E_{v h}^{(1) 1}+\Delta E_{v h}^{(1) 2}
$$

1-particle contributions: SE valence graph

CAUTION: p_{0}^{2} is the hole energy, flowing backward in time!

$$
\begin{aligned}
& \Delta g_{\alpha, v_{1} h_{2} v_{2} h_{1}}^{(1) \operatorname{SE}_{v}}(E) \delta\left(E-E^{\prime}\right) \propto \delta\left(E-p_{1}^{0}+p_{2}^{0}\right) \delta\left(E^{\prime}-p_{1}^{0}+p_{2}^{0}\right) \\
& \times \frac{I_{v_{1} j j v_{2}}(\omega)}{k^{0}-\epsilon_{j}+i \varepsilon\left(\epsilon_{j}-E_{\alpha}^{F}\right)} \frac{\delta\left(p_{1}^{0}-\omega-k^{0}\right)}{\left[p_{1}^{0}-\epsilon_{v}+i \varepsilon\right]^{2}} \frac{\delta_{h_{1} h_{2}}}{p_{2}^{0}-\epsilon_{h}-i \varepsilon}
\end{aligned}
$$

Extract most singular part:

$$
\begin{aligned}
& \frac{1}{\left[p_{1}^{0}-\epsilon_{v}+i \varepsilon\right]^{2}} \frac{1}{p_{1}^{0}-E-\epsilon_{h}-i \varepsilon}= \\
& \frac{1}{\left(E-E_{v h}^{(0)}\right)^{2}}\left[\frac{1}{p_{1}^{0}-E-\epsilon_{h}-i \varepsilon}-\frac{1}{p_{1}^{0}-\epsilon_{v}+\varepsilon}\right]+\text { less singular }
\end{aligned}
$$

1-particle contributions: SE valence graph

CAUTION: p_{0}^{2} is the hole energy, flowing backward in time!

$$
\begin{aligned}
& \Delta g_{\alpha, v_{1} h_{2} v_{2} h_{1}}^{(1) \operatorname{SE}_{v}}(E) \delta\left(E-E^{\prime}\right) \propto \delta\left(E-p_{1}^{0}+p_{2}^{0}\right) \delta\left(E^{\prime}-p_{1}^{0}+p_{2}^{0}\right) \\
& \times \frac{I_{v_{1} j j v_{2}}(\omega)}{k^{0}-\epsilon_{j}+i \varepsilon\left(\epsilon_{j}-E_{\alpha}^{F}\right)} \frac{\delta\left(p_{1}^{0}-\omega-k^{0}\right)}{\left[p_{1}^{0}-\epsilon_{v}+i \varepsilon\right]^{2}} \frac{\delta_{h_{1} h_{2}}}{p_{2}^{0}-\epsilon_{h}-i \varepsilon}
\end{aligned}
$$

Separating singularities in $E-E_{v h}^{(0)}$ and keeping the most singular one:

$$
\begin{aligned}
\Delta E_{v h}^{(1) S E v} & =\frac{i}{2 \pi} F_{v_{1} h_{1}} F_{v_{2} h_{2}} \int d \omega \sum_{j} \frac{I_{v_{1} j j v_{2}}(\omega) \delta_{h_{1} h_{2}}}{\epsilon_{v}-\omega-\epsilon_{j}+i \varepsilon\left(\epsilon_{j}-E_{\alpha}^{F}\right)} \\
& \equiv F_{v_{1} h_{1}} F_{v_{2} h_{2}} \delta_{h_{1} h_{2}}\left\langle v_{1}\right| \Sigma_{\alpha}\left(\epsilon_{v}\right)\left|v_{2}\right\rangle
\end{aligned}
$$

1-particle contributions: SE hole graph

$$
\begin{aligned}
& \Delta g_{\alpha, v_{1} h_{2} v_{2} h_{1}}^{(1) \text { SEh }}(E) \delta\left(E-E^{\prime}\right)=\left(\frac{i}{2 \pi}\right)^{2} \int d p_{2}^{0} d \omega \sum_{j} \\
& \times \frac{I_{h_{2} j h_{1}}(\omega)}{p_{2}^{0}-\omega-\epsilon_{j}+i \varepsilon\left(\epsilon_{j}-E_{\alpha}^{F}\right)} \frac{1}{\left[p_{2}^{0}-\epsilon_{h}-i \varepsilon\right]^{2}} \frac{\delta_{v_{1} v_{2}}}{E+p_{2}^{0}-\epsilon_{v}+i \varepsilon}
\end{aligned}
$$

Keeping the most singular part in $E-E_{v h}^{(0)}$:

$$
\begin{aligned}
\Delta E_{v h}^{(1) \text { SEh }} & =-\frac{i}{2 \pi} F_{v_{1} h_{1}} F_{v_{2} h_{2}} \int d \omega \sum_{j} \frac{I_{h_{2} j h_{1}}(\omega) \delta_{v_{1} v_{2}}}{\epsilon_{h_{1}}-\omega-\epsilon_{j}+i \varepsilon\left(\epsilon_{j}-E_{\alpha}^{F}\right)} \\
& \equiv-F_{v_{1} h_{1}} F_{v_{2} h_{2}} \delta_{v_{1} v_{2}}\left\langle h_{2}\right| \sum_{\alpha}\left(\epsilon_{h}\right)\left|h_{1}\right\rangle
\end{aligned}
$$

Total 1-particle contributions

Extended to VP graph under the modification:

$$
\left\langle v_{1}\right| \Sigma_{\alpha}\left(\epsilon_{v}\right)\left|v_{2}\right\rangle \rightarrow\left\langle v_{1}\right| \Upsilon_{\alpha}\left|v_{2}\right\rangle=-\frac{i}{2 \pi} \int d \omega \sum_{j} \frac{I_{v_{1} j v_{2} j}(0)}{\omega-\epsilon_{j}+i \varepsilon\left(\epsilon_{j}-E_{\alpha}^{F}\right)}
$$

Total 1-particle contributions

Extended to VP graph under the modification:
$\left\langle v_{1}\right| \Sigma_{\alpha}\left(\epsilon_{v}\right)\left|v_{2}\right\rangle \rightarrow\left\langle v_{1}\right| \Upsilon_{\alpha}\left|v_{2}\right\rangle=-\frac{i}{2 \pi} \int d \omega \sum_{j} \frac{I_{v_{1} j v_{2} j}(0)}{\omega-\epsilon_{j}+i \varepsilon\left(\epsilon_{j}-E_{\alpha}^{F}\right)}$
Total one-particle contribution:
$\Delta E_{v h}^{(1) 1}=\langle v| \Sigma_{\alpha}\left(\epsilon_{v}\right)|v\rangle+\langle v| \Upsilon_{\alpha}|v\rangle-U_{v v}-\langle h| \Sigma_{\alpha}\left(\epsilon_{h}\right)|h\rangle-\langle h| \Upsilon_{\alpha}|h\rangle+U_{h h}$

One-photon exchange: direct part

$$
\Delta E_{v h}^{(1) 2 d i r}=-\frac{1}{2 \pi i} F_{v_{1} h_{1}} F_{v v_{2} h_{2}} \oint_{\Gamma_{v h}} d E\left(E-E_{v h}^{(0)}\right) \Delta g_{\alpha, v_{1} h_{2} v_{2} h_{1}}^{(1) 2 \operatorname{dir}}(E)
$$

One has

$$
\begin{aligned}
& \Delta g_{\alpha, v_{1} h_{2} v_{2} h_{1}}^{(1)}(E) \delta\left(E-E^{\prime}\right) \propto \delta\left(E-p_{1}^{0}+p_{2}^{0}\right) \delta\left(E^{\prime}-p_{1}^{\prime 0}+p_{2}^{\prime 0}\right) \\
& \times \frac{\delta\left(p_{1}^{0}-\omega-p_{1}^{\prime 0}\right)}{p_{1}^{\prime 0}-\epsilon_{v}+i \varepsilon} \frac{\delta\left(p_{2}^{\prime 0}+\omega-p_{2}^{0}\right)}{p_{2}^{\prime 0}-\epsilon_{h}-i \varepsilon} \frac{I_{v_{1}} h_{2} v_{2} h_{1}(\omega)}{p_{1}^{0}-\epsilon_{v}+i \varepsilon} \frac{1}{p_{2}^{0}-\epsilon_{h}-i \varepsilon}
\end{aligned}
$$

One-photon exchange: direct part

$$
\Delta E_{v h}^{(1) 2 \operatorname{dir}}=-\frac{1}{2 \pi i} F_{v_{1} h_{1}} F_{v_{2} h_{2}} \oint_{\Gamma_{v h}} d E\left(E-E_{v h}^{(0)}\right) \Delta g_{\alpha, v_{1} h_{2} v_{2} h_{1}}^{(1) 2 \operatorname{dir}}(E)
$$

One has

$$
\begin{aligned}
& \Delta g_{\alpha, v_{1} h_{2} v_{2} h_{1}}^{(1)}(E) \delta\left(E-E^{\prime}\right) \propto \delta\left(E-p_{1}^{0}+p_{2}^{0}\right) \delta\left(E^{\prime}-p_{1}^{\prime 0}+p_{2}^{\prime 0}\right) \\
& \times \frac{\delta\left(p_{1}^{0}-\omega-p_{1}^{\prime 0}\right)}{p_{1}^{\prime 0}-\epsilon_{v}+i \varepsilon} \frac{\delta\left(p_{2}^{\prime 0}+\omega-p_{2}^{0}\right)}{p_{2}^{\prime 0}-\epsilon_{h}-i \varepsilon} \frac{l_{v_{1} h_{2} v_{2} h_{1}}(\omega)}{p_{1}^{0}-\epsilon_{v}+i \varepsilon} \frac{1}{p_{2}^{0}-\epsilon_{h}-i \varepsilon}
\end{aligned}
$$

Need to extract singular parts, to get in the end:

$$
\Delta E_{v h}^{(1) 2 \mathrm{dir}}=-F_{v_{1} h_{1}} F_{v_{2} h_{2}} I_{v_{1} h_{2} v_{2} h_{1}}(0)
$$

One-photon exchange: exchange part

$$
\Delta E_{v h}^{(1) 2 \text { exc }}=\frac{1}{2 \pi i} F_{v_{1} m_{1}} F_{v_{v} m_{2}} \oint_{\Gamma_{r_{h}}} d E\left(E-E_{v h}^{(0)}\right) \Delta g_{\alpha, k_{1} p_{2} v_{2}}^{(1) 2 \operatorname{lnc}}(E)
$$

with

$$
\begin{aligned}
& \Delta g_{\alpha, v_{1} h_{2} h_{1} v_{2}}^{(1) 2 \times{ }^{\prime}}\left(E\left(E-E^{\prime}\right)=\delta\left(E-p_{1}^{0}+p_{2}^{0}\right) \delta\left(E^{\prime}-p_{1}^{\prime 0}+p_{2}^{\prime 0}\right)\right. \\
& \times \frac{\delta\left(p_{2}^{0}-\omega-p_{1}^{\prime 0}\right)}{p_{1}^{\prime 0}-\epsilon_{v}+i \varepsilon} \frac{\delta\left(p_{2}^{\prime 0}+\omega-p_{1}^{0}\right)}{p_{2}^{\prime 0}-\epsilon_{h}-i \varepsilon} \frac{l_{v_{1} h_{2} h_{1} v_{2}}(\omega)}{p_{2}^{0}-\epsilon_{h}-i \varepsilon} \frac{1}{p_{1}^{0}-\epsilon_{v}+i \varepsilon}
\end{aligned}
$$

One-photon exchange: exchange part

$$
\Delta E_{v h}^{(1) 2 e x c}=\frac{1}{2 \pi i} F_{v_{1} h_{1}} F_{v_{2} h_{2}} \oint_{\Gamma_{v h}} d E\left(E-E_{v h}^{(0)}\right) \Delta g_{\alpha, v_{1} h_{2} h_{1} v_{2}}^{(1) 2 \operatorname{exc}}(E)
$$

with

$$
\begin{aligned}
& \Delta g_{\alpha, v_{1} h_{2} h_{1} v_{2}}^{(1) 2)}\left(E\left(E-E^{\prime}\right)=\delta\left(E-p_{1}^{0}+p_{2}^{0}\right) \delta\left(E^{\prime}-p_{1}^{\prime 0}+p_{2}^{\prime 0}\right)\right. \\
& \times \frac{\delta\left(p_{2}^{0}-\omega-p_{1}^{\prime 0}\right)}{p_{1}^{\prime 0}-\epsilon_{v}+i \varepsilon} \frac{\delta\left(p_{2}^{\prime 0}+\omega-p_{1}^{0}\right)}{p_{2}^{\prime 0}-\epsilon_{h}-i \varepsilon} \frac{I_{v_{1}} h_{2} h_{1} v_{2}(\omega)}{p_{2}^{0}-\epsilon_{h}-i \varepsilon} \frac{1}{p_{1}^{0}-\epsilon_{v}+i \varepsilon}
\end{aligned}
$$

After extraction of the most singular part:

$$
\Delta E_{v h}^{(1) 2 e x c}=F_{v_{1} h_{1}} F_{v_{2} h_{2}} l_{v_{1} h_{2} h_{1} v_{2}}\left(\Delta_{h v}\right)
$$

Total 2-particle contributions:

$$
\Delta E_{v h}^{(1) 2}=F_{v_{1} h_{1}} F_{v_{2} h_{2}}\left[I_{v_{1} h_{2} h_{1} v_{2}}\left(\Delta_{h v}\right)-I_{v_{1} h_{2} v_{2} h_{1}}(0)\right]
$$

First order corrections in redefined vacuum state

$$
\begin{aligned}
\Delta E_{v h}^{(1)} & =F_{v_{1} h_{1}} F_{v_{2} h_{2}}\left[I_{v_{1} h_{2} h_{1} v_{2}}\left(\Delta_{h v}\right)-I_{v_{1} h_{2} v_{2} h_{1}}(0)\right] \\
& +\langle v| \Sigma_{\alpha}\left(\epsilon_{v}\right)|v\rangle+\left\langle v \Upsilon_{\alpha} \mid v\right\rangle-U_{v v} \\
& -\langle h| \Sigma_{\alpha}\left(\epsilon_{h}\right)|h\rangle-\langle h| \Upsilon_{\alpha}|h\rangle+U_{h h},
\end{aligned}
$$

So far no interactions with core electrons, must be extracted!

Vacuum states

- Original (Fock) vacuum state:

$$
a_{j}|0\rangle=0 \quad \forall j: \epsilon_{j}>E^{F}=0
$$

- Redefined (Fock) vacuum state $|\alpha\rangle$:

$$
|\alpha\rangle=a_{a}^{\dagger} a_{b}^{\dagger} \ldots|0\rangle \text { such that } b_{a}|\alpha\rangle=0
$$

with associated Fermi level: $E_{\alpha}^{F} \in\left(\epsilon_{a}, \epsilon_{v}\right)$

- Effect on the electron propagator:

$$
\begin{aligned}
& \langle\alpha| T\left[\psi_{\alpha}^{(0)}(x) \psi_{\alpha}^{(0) \dagger}(y)\right]|\alpha\rangle= \\
& \frac{i}{2 \pi} \int d \omega \sum_{j} \frac{\phi_{j}(\boldsymbol{x}) \phi_{j}^{\dagger}(\boldsymbol{y}) \exp \left[-i\left(x^{0}-y^{0}\right) \omega\right]}{\omega-\epsilon_{j}+i \varepsilon\left(\epsilon_{j}-E_{\alpha}^{F}\right)}
\end{aligned}
$$

Effect of vacuum state redefinition $\left(E_{\alpha}^{F}\right)$

- Core electrons promoted into Dirac sea

C path: $1-i \varepsilon$ prescription C^{\prime} path: $1+i \varepsilon$ prescription
 $C_{i n t}=C^{\prime}-C$

- Benefits:
(1) $C_{i n t}$ describes interactions of the particle of interest with core electrons, accounted via loop and raditive corrections.
(2) Vacuum redefintion allows to selectively encircles the interaction partner of the corresponding state of interest.
V. M. Shabaev, Phys. Rep. 365, 119 (2002)

How to extract many-electron corrections

At one-loop level:

$$
\Delta E_{v}^{(1)}=\Delta E_{v}^{(1 L)}+\Delta E_{v}^{(1 /)}
$$

Graphically:

Sokhotski theorem:

$$
\begin{aligned}
& \sum_{j} \frac{\phi_{j}(\boldsymbol{x}) \bar{\phi}_{j}(\boldsymbol{y})}{\left[\omega-\epsilon_{j}+i \varepsilon\left(\epsilon_{j}-E_{\alpha}^{F}\right)\right]^{p}}-\sum_{j} \frac{\phi_{j}(\boldsymbol{x}) \bar{\phi}_{j}(\boldsymbol{y})}{\left[\omega-\epsilon_{j}+i \varepsilon\left(\epsilon_{j}-E^{F}\right)\right]^{p}} \\
& =\frac{2 \pi i(-1)^{p}}{(p-1)!} \frac{d^{(p-1)}}{d \omega^{(p-1)}} \sum_{a} \delta\left(\omega-\epsilon_{a}\right) \phi_{a}(\boldsymbol{x}) \bar{\phi}_{a}(\boldsymbol{y})
\end{aligned}
$$

From a redefined vacuum state to the standard one

Linkage:

$$
\begin{aligned}
\langle v| \Sigma_{\alpha}\left(\epsilon_{v}\right)|v\rangle & =\langle v| \Sigma\left(\epsilon_{v}\right)|v\rangle-\sum_{a} I_{\text {vaav }}\left(\Delta_{v a}\right) \\
\langle v| \Upsilon_{\alpha}|v\rangle & =\langle v| \Upsilon|v\rangle+\sum_{a} I_{\text {vava }}(0)
\end{aligned}
$$

From a redefined vacuum state to the standard one

Linkage:

$$
\begin{aligned}
\langle v| \Sigma_{\alpha}\left(\epsilon_{v}\right)|v\rangle & =\langle v| \Sigma\left(\epsilon_{v}\right)|v\rangle-\sum_{a} I_{\text {vaav }}\left(\Delta_{v a}\right) \\
\langle v| \Upsilon_{\alpha}|v\rangle & =\langle v| \Upsilon|v\rangle+\sum_{a} I_{\text {vava }}(0)
\end{aligned}
$$

Total first order corrections

$$
\begin{aligned}
\Delta E_{v h}^{(1)} & =\sum_{a}\left[I_{\text {vava }}(0)-I_{\text {vaav }}\left(\Delta_{v a}\right)\right]-\sum_{a}\left[I_{\text {haha }}(0)-I_{\text {haah }}\left(\Delta_{h a}\right)\right] \\
& +F_{v_{1} h_{1}} F_{v_{2} h_{2}}\left[I_{v_{1} h_{2} h_{1} v_{2}}\left(\Delta_{h v}\right)-I_{v_{1} h_{2} v_{2} h_{1}}(0)\right] \\
& +\langle v| \Sigma\left(\epsilon_{v}\right)|v\rangle+\langle v| \Upsilon|v\rangle-U_{v v} \\
& -\langle h| \Sigma\left(\epsilon_{h}\right)|h\rangle-\langle h| \Upsilon|h\rangle+U_{h h} .
\end{aligned}
$$

R. N. Soguel, et al.,Phys. Rev. A 106, 012802 (2022)

Conclusion and outlooks

- Two-time Green's function for valence-hole excitation derived
- Possible to account for full first order QED corrections in α
- Identification of gauge invariant subsets

Conclusion and outlooks

- Two-time Green's function for valence-hole excitation derived
- Possible to account for full first order QED corrections in α
- Identification of gauge invariant subsets
- Ne-like Ge: agreement up to 10^{-4} relative uncertainty between MBPT calculations and measured values!
\hookrightarrow First order radiative QED effects via Model Lamb-shift-operator \hookrightarrow Interelectronic interaction via frequency independent Breit interaction
- Ne-like Eu: agreement of the order of 1 eV , in absolute value, between MBPT predictions and experimental values.
P. Beiersdorfer et al., Phys. Rev. A 100, 032516 (2019)
P. Beiersdorfer, et al., Can. J. Phys. 98, 239 (2020)

