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MOTIVATION



Why investigate heavy, unstable, and artificial 

elements?

• (Exotic) nuclear and electronic structure and properties

• Information  about new elements, assignment in Periodic Table

• Behaviour and trends in lower part of the Periodic Table

• Benchmarks for atomic theory (e.g. contribution of QED 

effects)

•



Why investigate heavy, unstable, and artificial 

elements?

• Access to nuclear properties (moments, charge radii)

• Tests of nuclear theories

•

https://www.nature.com/articles/s41567-020-0868-y

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.192502



Why investigate heavy, unstable, and artificial 
elements?

• Promising systems to search for physics beyond the Standard 
Model (e.g. violation of fundamental symmetries)

• Heavy systems, effects scale as Z2-5

• Possible strong further enhancements due to the nuclear 
structure

• Versatile: sensitive to eEDM, hadronic EDMs, nuclear anapole 
moments, nuclear magnetic quadrupole moments, etc.  

https://phys.org/news/2021-03-

radioactive-molecules-mystery-

antimatter.html



Challenging experiments!

• Dealing with small amounts of unstable, short lived elements

• Combined with the challenge of achieving unprecedented sensitivity needed to detect the

tiny effects of new physics

• Alongside specially developed experimental techniques, theoretical studies become crucial



How can (atomic and molecular) theory be of use?

• (Important to remember: for us the practical considerations do not play a role!)

• Parameters for planning the experiments (predictions of transition energies, laser-

cooling schemes, etc.)

• Parameters for the interpretation of the results (HFS parameters for extraction of

nuclear properties, coupling parameters for new physics phenomena, etc.)

• Investigations where experiment is not yet possible

•



How can (atomic and molecular) theory be of use?

• (Important to remember: for us the practical considerations do not play a role!)

• Parameters for planning the experiments (predictions of transition energies, laser-

cooling schemes, etc.)

• Parameters for the interpretation of the results (HFS parameters for extraction of

nuclear properties, coupling parameters for new physics phenomena, etc.)

• Investigations where experiment is not yet possible

Thus we need:

• Reliable predictions based on high accuracy calculations

• Possibility of assigning uncertainties

Choice of computational method becomes important



COMPUTATIONAL METHODS

Figure courtesy of P. Schwerdtfeger
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What do we need?

• Atomic and molecular parameters needed in experiments

• Heavy (radioactive) systems, hence relativistic methods

• Coupling parameters describing the effect of P(T)-violating phenomena (or 

variation of constants) on electronic structure

• Relativistic in nature, hence relativistic methods

• High accuracy

• State-of-the-art treatment of correlation, large basis sets

• Uncertainty estimates

• Robust, transparent methods



Relativistic coupled cluster

• CCSD(T) - single reference coupled cluster 

• FSCC – multireference Fock space coupled cluster

Open shell systems, excited states, bond dissociation (good example: ThO 3Δ1 or any 

atomic spectrum)

• Large, converged Dyall’s basis sets

(K.G. Dyall, Theor. Chem Acc. 2002, 2004, 2006, 2007, 2009, 2011,2012,  etc.)



Relativistic coupled cluster



What can we calculate?

• Atomic properties: energies, IPs, EAs, spectra, hyperfine structure parameters, polarisabilities

• Molecular properties: geometries, spectroscopic constants, electronic structure, Franck-

Condon Factors (FCFs), transition strengths

• Specific properties:

• Wd, Ws (eEDM experiments)

• WA (NSD-PV, nuclear anapole moments)

• WM (nuclear magnetic quadrupole moments)

• Sensitivity to variation of α

• ...

• CCSD(T), FSCC (applicable to different systems/states)

• Expected accuracy: ~10 meV for energies, single % for properties

• Systematic investigation of effect of computational parameters and uncertainty evaluation



APPLICATIONS

• Electron affinity of At: benchmark accuracy and uncertainty 

evaluation

• SHE: Nh and Og



ELECTRON AFFINITY OF AT



• Measurement at ISOLDE by laser-photodetachment

spectroscopy

• Knowledge of EA important for targeted alpha cancer therapy 

• Calculations before the experiment



• Accuracy: ~10s of meV



Electron affinity of At

(eV) EA I At

“Golden Standard” DC-CCSD(T), d-aug-ae4z 3.010 2.372

Exp. 3.059038(10)

Reaching meV accuracy 



• Accuracy: ~10s of meV

Can we do better?



Reaching meV accuracy 
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(eV) EA I At

“Golden Standard” DC-CCSD(T), d-aug-

ae4z

3.010 2.372

Extrapolated to CBSL DC-CCSD(T) 3.040 2.402

Higher order 

correlation effects*

+ΔT 0.004 0.003

+(Q) 0.004 0.004

Exp. 3.059038(10)
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Reaching meV accuracy



Electron affinity of At

(eV) EA I At

“Golden Standard” DC-CCSD(T), d-aug-

ae4z

3.010 2.372

Extrapolated to CBSL DC-CCSD(T) 3.040 2.402

Higher order 

correlation effects

+ΔT 0.004 0.003

+Δ(Q) 0.004 0.004

Relativity +Breit* 0.003 0.003

+QED (VP+SE)** 0.003 0.003

Final

Exp. 3.059038(10)

* Tel Aviv atomic program

**Model Lamb shift operator (MLSO) of Shabaev (Comput. Phys. Commun. 189, 175 (2015))

Reaching meV accuracy 

Breit correction:

Lamb shift:



Electron affinity of At

(eV) EA I At

“Golden Standard” DC-CCSD(T), d-aug-

ae4z

3.010 2.372

Extrapolated to CBSL DC-CCSD(T) 3.040 2.402

Higher order 

correlation effects

+ΔT 0.004 0.003

+Δ(Q) 0.004 0.004

Relativity +Breit 0.003 0.003

+QED (VP+SE)* 0.003 0.003

Final 3.055 2.414

Exp. 3.059038(10)

*Model Lamb shift operator (MLSO) of Shabaev (Comput. Phys. Commun. 189, 175 (2015))

Reaching meV accuracy 



Electron affinity of At: uncertainty evaluation

?

?

?

Uncertainty evaluation



Source of uncertainty I At

Higher order QED 0.003 0.003

Higher excitations 0.004 0.004

Basis set 0.014 0.015

Total (eV) 0.015 0.016

Uncertainty evaluation

Higher order QED effects: smaller than vacuum polarization+self energy 

contributions

Higher excitations (full quadruples and higher): smaller than (Q)

Basis set: half the difference between CBSL and d-aug-ae4z basis results



Electron affinity of At

(eV) EA I At

“Golden Standard” DC-CCSD(T), d-aug-

ae4z

3.040 2.402

Extrapolated to CBSL DC-CCSD(T) 3.040 2.402

Higher order 

correlation effects

+ΔT 0.004 0.003

+Δ(Q) 0.004 0.004

Relativity +Breit 0.003 0.003

+QED (VP+SE)* 0.003 0.003

Final 3.055(15) 2.414(16)

Exp. 3.059038(10)



Electron affinity of At

(eV) EA I At

“Golden Standard” DC-CCSD(T), d-aug-

ae4z

3.040 2.402

Extrapolated to CBSL DC-CCSD(T) 3.040 2.402

Higher order 

correlation effects

+ΔT 0.004 0.003

+Δ(Q) 0.004 0.004

Relativity +Breit 0.003 0.003

+QED (VP+SE)* 0.003 0.003

Final 3.055(15) 2.414(16)

Exp. 3.059038(10) 2.41579(5)



Lowest for halogens, highest among 

the rest of the PT

Yangyang Guo



ATOMIC PROPERTIES OF NH (Z=113)



• Accurate predictions of IP and EA

• Similar calculations for the lighter homologues as a test 
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• Accurate predictions of IP and EA

• Similar calculations for the lighter homologues as a test

• Uncertainty estimates 

• Relativistic effects: higher IP and EA than in lighter homologues!

In Tl Nh

IP

DC(B)-CCSDTQ+QED 5.801(22) 6.135(32) 7.569(48)

Exp. 5.78636 (1) 6.10818(2)

EA

DC(B)-CCSDTQ+QED 0.375(18) 0.311(12) 0.776(30)

Exp. 0.3839(60) 0.32005(19)
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ATOMIC PROPERTIES OF OG (Z=118)



• Accurate predictions of IP and EA

• Similar calculations for the lighter homologue as a test 
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• New basis set extrapolation scheme (diffuse functions)



• Accurate predictions of IP and EA

• Similar calculations for the lighter homologues as a test

• New basis set extrapolation scheme (diffuse functions)

• Og confirmed as having a positive EA (in agreement with

other recent works, 0.096 eV1 and 0.076(4)2 )
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• Similar calculations for the lighter homologues as a test
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Exp. 10.7485 21.4(19)

Og

DC(B)-CCSDT(Q)+QED 8.888(44) 16.195(51) 0.080(6)
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• Accurate predictions of IP and EA

• Similar calculations for the lighter homologues as a test

• New basis set extrapolation scheme (diffuse functions)

• Og confirmed as having a positive EA
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CONCLUSIONS

• State of the art high accuracy computational approach

• Versatile method: many possible applications 

• Reliable predictions, uncertainty estimates possible

• Close collaborations with experimental groups (where possible)

➢Uncertainties often limited by basis set: development of 5ξ basis sets in 

collaboration with Ken Dyall

➢Expanding FSCC applicability (Mass shifts, more complex systems)



Ephraim Eliav Lukas PastekaKen Dyall, Schrödinger Inc.

https://www.researchgate.net/institution/Schroedinger_Inc


• Based on the 4c Dirac Hamiltonian

• Exponential wave operator:

• S is the excitation operator:

• CC energy equations: 

• Accurate, all-order in PT, size-extensive, and size-consistent

RELATIVISTIC COUPLED CLUSTER



Reaching meV accuracy 

Complete basis set limit extrapolation

V. Vasilyev, http://sf.anu.edu.au/∼vvv900/cbs



Why look for physics beyond the Standard Model (SM)?

• The SM  is currently the best fitting physical description of 

the world around us.

• So far successfully explained the majority of observed 

natural phenomena and  has strong predictive power 

(Higgs boson, top quark, tau neutrino)

• But… it is incomplete



Why look for physics beyond the Standard Model (SM)?

• Extensions to the SM attempt to fill these knowledge gaps.

• Grand Unified Theories, String Theory, SUSY, …

• These extensions predict new physical phenomena beyond

the SM.

• Variation of fundamental constants (VFC)

• Violation of fundamental symmetries (CP, P,T)

• (non) discovery of these phenomena allows to discriminate

between extensions or new theories.



Why look for physics beyond the SM with atoms and molecules?

• Accelerator research (LHCb, T2K, etc.)

• Table-top experiments



Why look for physics beyond the SM with atoms and molecules?

• Table-top experiments: promising alternative to high energy research

• Versatile, sensitive to different phenomena

• Parity violation

• EDMs (electron, hadronic)

• Variation of fundamental constants

• Dark matter

• ..

• Various enhancement effects→ high sensitivity

• Small scale

• (Relatively) inexpensive





PARITY VIOLATION IN CHIRAL 
MOLECULES



• Is there a difference in the properties of the right- and the left 

handed enantiomers?

• PV is firmly established in nuclear and atomic physics

• In chiral molecules, the weak neutral current between the electrons and 

the nuclei is predicted to result in a tiny energy difference between the 

enantiomers. 

• If detected, this could help explain the origins of biohomochirality



• Is there a difference in the properties of the right-

and the left handed enantiomers?

• So far, no detection!

• The search continues: in electronic transitions, NMR 

spectroscopy,  and in vibrational spectroscopy



• Search for parity violation in vibrational spectroscopy.

• Measure hνL-hνR

• Measurements performed at Laboratoire de Physique des Lasers 
(LPL), on the C-F stretch vibration in CHFClBr



• Search for parity violation in vibrational 

spectroscopy.

• Measure hνS-hνR

• Measurements performed at Laboratoirede Physique des 

Lasers (LPL), on the C-F stretch vibration in CHFClBr

• Upper limit of 10-13 

• Theoretical estimates of the effect ~10-17

(Phys. Rev. Lett. 84, 3807 (2000); Phys. Rev. A 71, 012103 (2005);

Phys. Rev. A 103, 042819 (2021); Phys. Rev. Lett. 125, 123004 (2020)



• Search for parity violation in vibrational spectroscopy.

• Better candidate molecule needed!

• Shopping list:

• Stable, commercially available

• Can be separated into pure enantiomers

• Can be brought into the gas phase

• Should contain heavy elements (absolute PV energy predicted to 
scale as Z5)

• Should have strong vibrational transitions in the range of the 
lasers (4-15 μm)

• Relative effects of the order 10-15 can now be detected at LPL
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