

Calculations for heavy atoms with open shells: energy levels and hyperfine structure of Cf, Es, Fm, and Md.

Vladimir Dzuba,

Saleh Allehabi, Victor Flambaum

University of New South Wales, Sydney, Australia **Jiguang Li,**

Institute of Applied Physics and Computational Mathematics, Beijing 100088, China

1 H																	2 He
3 Li	4 Be											5 B	6 C	7 N	8	9 F	10 Ne
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	28 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg		113 Nh	114 Fl	115 Mc	116 Lv	117 Ts	118 Og
119	120																
			57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	

Am

Cm

Present work

Md

No

Bk

Cf

Atoms with Z>97 have open 5f, 7s, 6d or/and 7p shells. Number of valence electrons from 1 to 16. Standard CI technique would not work!

The CIPT method

(configuration interaction with perturbation theory)
V. A. Dzuba, J. C. Berengut, C. Harabati, and V. V. Flambaum,
PRA **95**, 012503 (2017))

The structure of the CI matrix

Use V^{N-1} as good initial approximation

$$\Psi = \sum_{i} c_{i} \Phi_{i} + \sum_{m} c_{m} \Phi_{m}$$
Small correction

Has small number of terms

Neglecting the off-diagonal m.e. corresponds to neglecting the third-order terms

$$\delta E_g = \sum_{i,j} \frac{\langle g|H^{\text{CI}}|i\rangle\langle i|H^{\text{CI}}|j\rangle\langle j|H^{\text{CI}}|g\rangle}{(E_g - E_i)(E_g - E_j)}.$$

Suppressed by large energy denominators

The idea is not new and gaining popularity.

E. A. Parpia, C. Froese Fischer, I. P. Grant,
 GRASP92, CPC 94, 249 (1996).

$$\begin{pmatrix} \mathbf{H}_{00} & \mathbf{H}_{01} \\ \mathbf{H}_{10} & \operatorname{diag}(\mathbf{H}_{11}) \end{pmatrix} \tag{3.15}$$

- E. V. Kahl, J. C. Berengut, Emu Cl, CPC 238, 232 (2019).
- M. G. Kozlov , I. I. Tupitsyn, A. I. Bondarev , D. V. Mironova PRA 105, 052805 (2022).
- Etc...

Current implementation (the CIPT method)

$$(H^{\mathrm{CI}} - EI)X = 0, \tag{1}$$

$$\langle i | H | j \rangle \rightarrow \langle i | H | j \rangle + \sum_{m} \frac{\langle i | H | m \rangle \langle m | H | j \rangle}{E - E_{m}}$$
 (2)

Eqs. (1) and (2) give exact solution for the shown CI matrix if energy E in (1) an (2) are the same.

I.e., iterations are needed.

Only first iteration takes time since the numerator can be saved and reused.

Neglecting the off-diagonal m.e. is the only assumption!

Limitations of the CIPT method

- Only low-lying states can be calculated.
- Calculations are sensitive to the initial approximation. This may lead to different accuracy for different states.
- Core-valence correlations are not included.
- Half-filled f-shell is hard to treat.

First two limitations can be eased by increasing the size of the effective CI matrix.

In contrast, core-valence correlations require special consideration.

Special use of the CIPT approach: increasing efficiency of the CI+MBPT method.

~10 electrons, V^{N-1}

CI matrix

$$N_{\rm eff} \sim 1 - 100$$
; $N_{\rm total} \sim 10^7 - 10^8$

~5 electrons, V N-M

$$N_{\rm eff} \simeq 10^3 - 10^4$$
; $N_{\rm total} \simeq 10^6$

- The use of V^{N-M} allows to include core-valence correlations.
- The use of CIPT allows to go to larger number of electrons.

Calculation of matrix elements

RPA equations: $(\hat{H}^{\text{RHF}} - \epsilon_c)\delta\psi_c = -(\hat{f} + \delta V_{\text{core}}^f)\psi_c$

Transition amplitudes: $A_{ab} = \langle a | \hat{d} + \delta V^{N-1} | b \rangle$,

Hyperfine structure $\delta \epsilon_v = \langle v | \hat{f} + \delta V_{\rm core}^f | v \rangle$.

Magnetic dipole hfs: $A_a = \frac{g_I \delta \epsilon_a^{(A)}}{\sqrt{J_a (J_a + 1)(2J_a + 1)}},$

Electric quadrupole hfs:

$$B_a = -2Q\delta\epsilon_a^{(B)} \sqrt{\frac{J_a(2J_a - 1)}{(2J_a + 3)(2J_a + 1)(J_a + 1)}}.$$

Breit and QED

Breit interaction (ω =0):

(magnetic interaction and retardation)

$$H_B = -\frac{\alpha_1 \alpha_2 + (\alpha_1 n)(\alpha_2 n)}{2r}$$

Breit potential is formed: $e^2/r \rightarrow V^C$, $H^B \rightarrow V^B$

QED. Radiative potential method (Flambaum and Ginges, 2005)

$$\Phi_{\text{rad}}(r) = \Phi_U(r) + \Phi_g(r) + \Phi_f(r) + \Phi_l(r) + \frac{2}{3}\Phi_{WC}^{simple}(r)$$

- $\Phi_{a}(r)$ magnetic formfactor
- $\Phi_f(r)$ electric formfactor
- $\Phi_{l}(r)$ low energy electric formfactor
- $\Phi_{U}(r)$ Uehling potential
- $\Phi_{WC}(r)$ Wichmann-Kroll potential

Both potentials are included into HF:

$$V^{\rm HF} \rightarrow V^{\rm HF} + V^{\rm B} + \Phi_{\rm rad}$$

Relaxation effect in E119

(for Breit and QED)

Breit

State	Energy	<ψ <i>H</i> ^B ψ>	(no relaxation)	$\Delta E_{\rm B}$ (with	relaxation)
	cm ⁻¹	cm ⁻¹	%	cm ⁻¹	%
8s 1/2	-39697	217	-0.5%	38	-0.1%
8p 1/2	-24482	126	-0.5%	67	-0.3%
8p 3/2	-18626	45	-0.2%	8	-0.04%
7d 3/2	-17926	65	-0.4%	-30	+0.2%
7d 5/2	-17422	46	-0.3%	-28	+0.2%

QED

State	Energy cm ⁻¹	$<\psi \Phi_{rad} \psi$ cm ⁻¹	> (no relaxation) %	ΔE _{rad} (wit	th relaxation) %
	CIII	CIII	70	CIII	70
8s 1/2	-39697	108	-0.3%	78	-0.2%
8p 1/2	-24482	19	-0.08%	7	-0.03%
8p 3/2	-18626	11	-0.06%	4	-0.02%
7d 3/2	-17926	2	-0.01%	-21	+0.1%
7d 5/2	-17422	3	-0.02%	-16	+0.1%

The use of the CIPT method

1 H																	2 He
3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
11 Na	12 Mg											13 Al	14 Si		16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti		24 Cr	25 Mn	26 Fe	27 Co	28 Ni	28 Cu			32 Ge			35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr			_	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd		50 Sn				54 Xe
55 Cs	56 Ba	71 Lu	72 H1		74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au			82 Pb		84 Po		86 Rn
87 Fr	88 Ra	103 Lr	104 Rf				108 Hs	109 Mt	110 Ds	111 Rg						117 Ts	118 Og
119	120	0															
			57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	
			89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	

Present work

More than 10 publications

Energy levels of Tm and Md

(thulium and mendelevium)

Energy levels of Fm

(odd states connected to the G.S. by E1).

Expt.: Sewtz et al, PRL **90**, 163002 (2003)

Backe et al, Hyperfine Interactions **162**, 3(2005)

Ionization potentials

(cm⁻¹)

Atom	Calculations	NIST	Difference
₆₈ Er	49216	49262	0.1%
₆₉ Tm	50332	49880	0.9%
₉₈ Cf	50821	50663	0.3%
₉₉ Es	51763	51358	0.8%
₁₀₀ Fm	52902	52600(1050)	~1%
₁₀₂ Md	53800	53100(600)	~1%

Coclusions:

- Accuracy is good for ground states
- Should be true for HFS as well
- HFS of ground states is sufficient to find A and B.

HFS of the ground state of Dy, Ho, Er, Es. Comparison with experiment (MHz).

	A _{theor}	B _{theor}	A _{expt}	B _{expt}
¹⁶¹ Dy	-113	1127	-116.231	1091.577
¹⁶⁵ Ho	787	-1943	800.583	-1668.089
¹⁶⁷ Er	-117	-5034	-120.487	-4552.984
²⁵³ Es	798	-5481	817.153	-4316.254

Expt.: Childs, PRA 28, 3402 (1983).

$$\Delta A/A < 3\%$$

 $\Delta B/B \sim 3-30\%$

HFS of the ground state of Cf, Es, Fm, and Md (MHz).

Atom	Conf.	Term	A	В
Cf	$5f^{10} 7s^2$	⁵ ₈	608 (μ/I)	477 Q
Es	$5f^{11} 7s^2$	5 0 15/2	681 (μ/I)	-818 Q
Fm	$5f^{12} 7s^2$	3H_6	655 (μ/I)	-1750 Q
Md	$5f^{13} 7s^2$	² F ^o _{7/2}	826 (μ/I)	-1808 Q

Similar accuracy is expected.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		CIPT		Experimental	A/g_I	B/Q	More on Fm
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Energy		energy $[5, 6]$	MHz	MHz	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				nd state, $J=6$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\mathbf{S}	0			655	-1750	HFS was measured before
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				sates with $J=5$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		24605			1927		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		25512	1.1212	` /	253	-1787	HFS was measured before
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		28497	1.1776	` ,	1449	-1164	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Р	28715	1.2343	28185(1.5)	3086	135	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D	30669	1.1147		553	592	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Odd st	sates with $J=6$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Р	18964	1.2565		2580	-1458	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		19595	1.2846		730	-621	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Р	20167	1.0880		-752	-1211	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D	24638	1.1643		651	-956	
P 29060 1.1721 28377(1.5) 481 -1885 Odd states with $J = 7$ D 20128 1.2341 821 -1039 $S = 5f^{12} 7s^2$ P 20352 1.1953 2823 -1732 $P = 5f^{12} 7s 7p$ D 24267 1.1526 623 -956 $P = 5f^{12} 7s 7p$ P 25143 1.2344 2394 -1775 $P = 5f^{12} 7s 7p$ P 29337 1.1455 28391(1.5) -359 -1080 $P = 5f^{11} 6d 7s^2$ D 33110 1.1481 439 250	Р	25397	1.1854	25099.8(0.2)	1850	-1956	HFS was measured before
Odd states with $J=7$ D 20128 1.2341 821 -1039 $S = 5f^{12} 7s^2$ P 20352 1.1953 2823 -1732 $P = 5f^{12} 7s^2$ D 24267 1.1526 623 -956 P 25143 1.2344 2394 -1775 $P = 29337$ 1.1455 28391(1.5) -359 -1080 D 33110 1.1481 439 250	Р	28663	1.2501	27466(1.5)	3063	406	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Р	29060	1.1721	28377(1.5)	481	-1885	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Odd st	sates with $J=7$			
D 24267 1.1526 623 -956 $P = 5f^{12} / s / p$ P 25143 1.2344 2394 -1775 P 29337 1.1455 28391(1.5) -359 -1080 D 33110 1.1481 439 250	D	20128	1.2341		821	-1039	$S = 5f^{12} 7s^2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Р	20352	1.1953		2823	-1732	D [f12 7 - 7 -
P 29337 1.1455 28391(1.5) -359 -1080 D 33110 1.1481 439 250	D	24267	1.1526		623	-956	$P = 5T^2 / S / P$
P 29337 1.1455 28391(1.5) -359 -1080 D 33110 1.1481 439 250	Р	25143	1.2344		2394	-1775	$D - 5f^{11} 6d 7s^2$
	Р	29337	1.1455	28391(1.5)	-359	-1080	D = 31 00 73
D 33900 1.0641 547 225 Expt.: Sewtz et al, PRL 90 , 163002 (200	D	33110	1.1481	, ,	439	250	
	D	33900	1.0641		547	225	Expt.: Sewtz et al, PRL 90 , 163002 (2003)
Backe et al, HI 162 , 3(2005)							Backe et al, HI 162 , 3(2005)

Conclusion

The CIPT method is a valuable tool in studying open-shell atoms and helping fundamental research in many ways.