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method in which most of the high-energy many-electron basis
states are treated perturbatively rather than being included
into the CI matrix diagonalization. This addresses the main
problem of the CI method: the huge size of the CI matrix
for systems with many valence electrons. As a result, the main
limitations of the CI approach are removed and the method can
be used practically for any atom. We call this the configuration
interaction perturbation theory (CIPT) method and apply it to
the iodine atom and its ions, tungsten, and ytterbium atoms
as examples of systems with open p, d, and f shells. We
demonstrate the strengths and limitations of the approach.

II. REDUCING THE SIZE OF THE CI MATRIX

We begin our discussion of calculations for many-electron
atoms with the configuration interaction (CI) technique. There
are many versions of the CI method differing in the way the
core-valence correlation is included, the basis used, etc. (see,
e.g., [29– 31]). We shall postpone the discussion of the details
of the CI calculations to the consideration of specific examples.
In this section, we only consider the very general problem of
calculating eigenstates of a Hamiltonian matrix of huge size.

In the CI approach, all atomic electrons are divided into
two groups: closed-shell core and remaining valence electrons
which occupy the outermost open subshells. The wave function
for state number m for valence electrons has the form of
expansion over single-determinant basis states,

!m(r1, . . . ,rNe
) =

∑

i

cim"i(r1, . . . ,rNe
). (1)

The coefficients of expansion cim and corresponding energies
Em are found by solving the CI matrix eigenstate problem,

(H CI − EI )X = 0, (2)

where I is the unit matrix, the vector X = {c1, . . . ,cNs
}, and

Ns is the number of many-electron basis states. The basis
states "i(r1, . . . ,rNe

) are obtained by distributing Ne valence
electrons over a fixed set of single-electron orbitals. The
number of basis states Ns grows exponentially with the number
of electrons Ne (see, e.g., [44]). So does the size of the CI
matrix. In practice, the CI matrix reaches an unmanageable
size for Ne ! 4. This greatly limits the applicability of the CI
method since the number of valence electrons can be as large
as 16 (e.g., states of the Yb atom with excitations from the
4f subshell). We suggest that under certain conditions, the CI
calculations can still be performed for any number of valence
electrons at the expense of some small sacrifice of the accuracy
of the results. The conditions are as follows:

(i) We are only interested in a few of the lowest eigenstates
of the matrix. Note that we construct the CI matrix for atomic
states of definite total angular momentum J and parity π , J π ;
π is either + or −. There is a separate CI matrix for every J π .
Therefore, the few lowest states of every such CI matrix may
add up to hundreds of atomic states.

(ii) The many-electron basis states "i(r1, . . . ,rNe
) are

ordered in terms of their energies (i.e., their diagonal matrix
element). The state with the lowest energy goes first and the
state with the highest energy is the last in the list.

0

FIG. 1. The structure of the CI matrix. The matrix is real and
symmetric, therefore only upper triangular part is shown. The black
triangular shape in the top-left corner of the matrix is the effective CI
matrix. Neglected off-diagonal matrix elements between high-energy
states are shown in white.

(iii) The wave-function expansion (1) saturates with a
relatively small number of first terms. The rest of the sum
is just a small correction.

Note that the current approach is applicable to any matrix,
not just the CI matrix. In the general case, the last two
conditions can be reformulated in the following way: the
matrix has only a relatively small number of large off-diagonal
matrix elements, and the matrix can be reorganized in such a
way that all important off-diagonal matrix elements are located
in the top-left corner of the matrix.

We divide all many-electron basis states "i into two
groups. The first group P contains the low-energy states
which dominate in the expansion (1). We use the notation
Neff for the number of such states (Neff ≪ Ns), and we call
the corresponding part of the CI matrix the effective CI matrix.
The second group Q consists of all remaining high-energy
states.

We can neglect all off-diagonal matrix elements in the high-
energy group Q. Indeed, the contributions of these matrix
elements to the energies and wave functions in the low-energy
group P are insignificant. These follow from the perturbation
theory estimates. The correction to the energy of the low-
energy state g from the off-diagonal matrix elements ⟨i|H CI|j ⟩
between the high-energy states appears in the third order of the
perturbation theory and is suppressed by the two large energy
denominators Eg − Ei and Eg − Ej :

δEg =
∑

i,j

⟨g|H CI|i⟩⟨i|H CI|j ⟩⟨j |H CI|g⟩
(Eg − Ei)(Eg − Ej )

. (3)

The structure of the full CI matrix is shown in Fig. 1. The
matrix is real and symmetric, so that one can consider only the
upper (or lower) triangular part of the matrix. The effective CI
matrix is in the top-left corner of the full matrix and shown in
black. The off-diagonal matrix elements between high-energy
states, which are put to zero, are shown in white. The diagonal
matrix elements for the high-energy states are not neglected
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Neglecting	the	off-diagonal	m.e.	corresponds	
to	neglecting	the	third-order	terms	

Suppressed	by	large	energy	denominators	

0

Use	V	N-1	as	good	initial	approximation	
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Optimise on the following l e ve l ( s ) :  

Level I Energy = -1.999687560923D+02 Weight = 5.000000000000D-01 
Level 2 Energy = -1.998731843892D+02 Weight = 5.000000000000D-Of 

J P = 0 +: 93.10~ of CSF I 4.24~ of CSF 12 1.99X of CSF 7 .21~ of CSF 10 
J P = 1 -: 65.75Z of CSF 2 31.90Z of CSF 3 .72Z of CSF 13 .58X of CSF 6 

Weighted average energy of these levels - -1.9992097024D+02 

Generalised occupation numbers 

2.0000000D+O0 1.9999936D+00 1.9999833D+00 3.9999714D+00 1.4227065D+00 
5.1662856D-03 2.4310262D-03 3.0531831D-03 2.3715401D-03 4.3121359D-03 
7.99SOl14D-05 5.6074553D-05 

Lagrange multipliers: 

ls 4s -7.620105016D-05 
2s 4s -I.159930850D-04 
2p- 4p- 4.713666133D-04 
2p 4p 7.642318065D-04 
3s 4s -8.383346360D-03 
3p- 4p- -3.858038174D-04 
3p 4p 5.739446297D-04 
3d- 4<I- 3.473688193D-05 
3d 4<I 1.139454270D-04 

Iteration number 23 

Subshell Energy PO 

EA. Parpia et al./ Computer Physics Communications 94 (1996) 249-271 

3.5111533D-01 
8.4558455D-05 

Self- DampinE 
Norm Method consistency factor 

START: 4s subshell: accuracy 3.7D-06 
attained after 1 iterations; this fails t h e  
accuracy criterion 1.6D-08. 

4s  5 . 8 0 9 4 5 3 5 4 3 D - 0 1  - 5 . 8 6 0 0 4 1 7 3 1 D + 0 0  9 .999999548D-01  
4p- 3.984865179D-01 -2.083540228D-02 9.999996294/)-01 
4p 2.669581301D-01 -9.813523205D+00 9.999999027D-01 
4d- 6.749108854D-01 -8.513602424D-04 1.000000294D+00 
4d 4.477702924D-01 -2.182286534D+00 9.999998805D-01 
4f- 8.354884831D-01 2.374494769D-04 1.000000157D+00 
4f  1.129465298D+00 2.401844884D+00 1.000000178D+00 

MATRIX . . .  

Average  e n e r g y  = -1.8909505578D+02 HazCrees  

3 6.7655D-10 .0013 
3 8.6205D-09 .0013 
3 1.7402D-09 .0013 
3 2.9368D-09 .0013 
3 2.0560D-09 .0013 
3 1.9225D-09 .0013 
3 4.4181D-09 .0013 

.18Z of CSF 29 
.37Z of  CSF 14 

2.0849333D-01 
1.8177098D-04 

JP MTP INV 

282 333 0 3 
284 338 0 2 
290 337 0 2 
277 335 0 1 
283 334 0 1 
274 332 0 0 
270 330 0 0 

MANEIG ... 

NNP 

FNDBLK ... 

Matrix is reducible; number of blocks is 2. 
Number of elements in each block: 

23 147 
DVDSON: 18 loops; 19 matrix-vector multiplies. 
DVDSON: 21 loops; 22 matrix-vector multiplies. 
RSCF92: Execution complete. 

$ 
Fig. 11 --continued. 

Hoo Hol ) (3.15) 
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An illustration of  such a calculation appears in 
Figs. 16-19. We begin by determining all n = 5 
subshell radial wavefunctions from a calculation anal- 
ogous to that which was used to determine the n = 4 

subshell radial wavefunctions: let the 236-member 
CSF list that includes all single replacements be 
s t e p 5 . 1 . c s l ,  and the 107-member CSF list that 
includes all double replacements from the valence 
subshells be s t o p 5 . 1 . c s l ;  when merged using 
MRGCSL, a 321-member CSF list s t e p 5 . 3 ,  c s l  is 
generated. The subshell radial wavefunctions stored in 

The	idea	is	not	new	and	gaining	popularity.	
	
•  E.	A.	Parpia,	C.	Froese	Fischer,	I.	P.	Grant,	

GRASP92,	CPC	94,	249	(1996).	

•  E.	V.	Kahl,	J.	C.	Berengut,	Emu	CI,	CPC	238,	232	(2019).	

•  M.	G.	Kozlov	,	I.	I.	Tupitsyn,	A.	I.	Bondarev	,		D.	V.	
Mironova	PRA	105,	052805	(2022).	

•  Etc...	

(3.15)	
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method in which most of the high-energy many-electron basis
states are treated perturbatively rather than being included
into the CI matrix diagonalization. This addresses the main
problem of the CI method: the huge size of the CI matrix
for systems with many valence electrons. As a result, the main
limitations of the CI approach are removed and the method can
be used practically for any atom. We call this the configuration
interaction perturbation theory (CIPT) method and apply it to
the iodine atom and its ions, tungsten, and ytterbium atoms
as examples of systems with open p, d, and f shells. We
demonstrate the strengths and limitations of the approach.

II. REDUCING THE SIZE OF THE CI MATRIX

We begin our discussion of calculations for many-electron
atoms with the configuration interaction (CI) technique. There
are many versions of the CI method differing in the way the
core-valence correlation is included, the basis used, etc. (see,
e.g., [29– 31]). We shall postpone the discussion of the details
of the CI calculations to the consideration of specific examples.
In this section, we only consider the very general problem of
calculating eigenstates of a Hamiltonian matrix of huge size.

In the CI approach, all atomic electrons are divided into
two groups: closed-shell core and remaining valence electrons
which occupy the outermost open subshells. The wave function
for state number m for valence electrons has the form of
expansion over single-determinant basis states,

!m(r1, . . . ,rNe
) =

∑

i

cim"i(r1, . . . ,rNe
). (1)

The coefficients of expansion cim and corresponding energies
Em are found by solving the CI matrix eigenstate problem,

(H CI − EI )X = 0, (2)

where I is the unit matrix, the vector X = {c1, . . . ,cNs
}, and

Ns is the number of many-electron basis states. The basis
states "i(r1, . . . ,rNe

) are obtained by distributing Ne valence
electrons over a fixed set of single-electron orbitals. The
number of basis states Ns grows exponentially with the number
of electrons Ne (see, e.g., [44]). So does the size of the CI
matrix. In practice, the CI matrix reaches an unmanageable
size for Ne ! 4. This greatly limits the applicability of the CI
method since the number of valence electrons can be as large
as 16 (e.g., states of the Yb atom with excitations from the
4f subshell). We suggest that under certain conditions, the CI
calculations can still be performed for any number of valence
electrons at the expense of some small sacrifice of the accuracy
of the results. The conditions are as follows:

(i) We are only interested in a few of the lowest eigenstates
of the matrix. Note that we construct the CI matrix for atomic
states of definite total angular momentum J and parity π , J π ;
π is either + or −. There is a separate CI matrix for every J π .
Therefore, the few lowest states of every such CI matrix may
add up to hundreds of atomic states.

(ii) The many-electron basis states "i(r1, . . . ,rNe
) are

ordered in terms of their energies (i.e., their diagonal matrix
element). The state with the lowest energy goes first and the
state with the highest energy is the last in the list.

0

FIG. 1. The structure of the CI matrix. The matrix is real and
symmetric, therefore only upper triangular part is shown. The black
triangular shape in the top-left corner of the matrix is the effective CI
matrix. Neglected off-diagonal matrix elements between high-energy
states are shown in white.

(iii) The wave-function expansion (1) saturates with a
relatively small number of first terms. The rest of the sum
is just a small correction.

Note that the current approach is applicable to any matrix,
not just the CI matrix. In the general case, the last two
conditions can be reformulated in the following way: the
matrix has only a relatively small number of large off-diagonal
matrix elements, and the matrix can be reorganized in such a
way that all important off-diagonal matrix elements are located
in the top-left corner of the matrix.

We divide all many-electron basis states "i into two
groups. The first group P contains the low-energy states
which dominate in the expansion (1). We use the notation
Neff for the number of such states (Neff ≪ Ns), and we call
the corresponding part of the CI matrix the effective CI matrix.
The second group Q consists of all remaining high-energy
states.

We can neglect all off-diagonal matrix elements in the high-
energy group Q. Indeed, the contributions of these matrix
elements to the energies and wave functions in the low-energy
group P are insignificant. These follow from the perturbation
theory estimates. The correction to the energy of the low-
energy state g from the off-diagonal matrix elements ⟨i|H CI|j ⟩
between the high-energy states appears in the third order of the
perturbation theory and is suppressed by the two large energy
denominators Eg − Ei and Eg − Ej :

δEg =
∑

i,j

⟨g|H CI|i⟩⟨i|H CI|j ⟩⟨j |H CI|g⟩
(Eg − Ei)(Eg − Ej )

. (3)

The structure of the full CI matrix is shown in Fig. 1. The
matrix is real and symmetric, so that one can consider only the
upper (or lower) triangular part of the matrix. The effective CI
matrix is in the top-left corner of the full matrix and shown in
black. The off-diagonal matrix elements between high-energy
states, which are put to zero, are shown in white. The diagonal
matrix elements for the high-energy states are not neglected
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i |H | j → i |H | j +
i |H |m m |H | j

E −Emm
∑

0
(1)	
	
(2)	

Current	implementation	(the	CIPT	method)	

Eqs.	(1)	and	(2)	give	exact	solution	for	the	shown	CI	matrix	if	
energy	E	in	(1)	an	(2)	are	the	same.	
	
I.e.,	iterations	are	needed.		
Only	first	iteration	takes	time	since	the	numerator	can	be	
saved	and	reused.	
	
Neglecting	the	off-diagonal	m.e.	is	the	only	assumption!	



Limitations	of	the	CIPT	method		

Ψ = ci
i
∑ Φi + cm

m
∑ Φm

Small	correction	

Has	small	number	of	terms	

•  Only	low-lying	states	can	be	calculated.	

•  Calculations	are	sensitive	to	the	initial	
approximation.	This	may	lead	to	
different	accuracy	for	different	states.	

•  Core-valence	correlations	are	not	
included.	

	
•  Half-filled	f-shell	is	hard	to	treat.		

First	two	limitations	can	be	eased	by	increasing	the	size	of	the	
effective	CI	matrix.	
	
In	contrast,	core-valence	correlations	require	special	consideration.		



Special	use	of	the	CIPT	approach:	increasing	
efficiency	of	the	CI+MBPT	method.		

0 0

~10	electrons,	V	N-1	

•  The	use	of	V	N-M	allows	to	
include	core-valence	
correlations.	

•  The	use	of	CIPT	allows	to	go	
to	larger	number	of	
electrons.	

~5	electrons,	V	N-M	

CI	
matrix	

Neff	~	1	–	100;		Ntotal	~	107	-	108	

Neff	~	103	-	104;		Ntotal	~	106		
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TABLE I. The number of configurations and the size of the ef-
fective CI matrix for Hf and Rf. NNC is the number of nonrelativistic
configurations, NRC is the number of relativistic configurations, and
N1 is the corresponding number of states with given J p .

J p NNC NRC N1

1+ 80 364 726
2+ 80 364 987
3+ 80 364 968
4+ 80 364 784
1− 60 259 470
2− 60 259 605
3− 60 259 566

where I is the unit matrix. Neglecting the off-diagonal ma-
trix elements in D leads to a very simple structure of
the (EaI − D)−1 matrix, (EaI − D)−1

ik = δik/(Ea − Ek ), where
Ek = ⟨k|HCI|k⟩ (see [19] for more details). Equation (9) gives
the same solution as Eq. (6) if the energy parameter Ea in the
left-hand side of (9) has the same value as the solution Ev .
Since the value of Ev is not known in advance, we use an
iterative procedure, E (n )

a = E (n−1)
v , where n is iteration num-

ber. On first iteration one can use a solution of the simplified
equation AX = EaX or use some guess energy. In most cases
less than 10 iterations is sufficient for full convergence.

The relative sizes of blocks A and D can be varied in the
calculations in search of a reasonable compromise between
the accuracy of the results and the computer power needed to
obtain them. In our current calculations, the number of lines
in (9) is ∼ 103.

Note that the CI matrix is different for every combination
of the value of the total angular momentum J and the parity of
the states (J p). Therefore, the choice of the N1 parameter (i.e.,
the size of the effective CI matrix) should be done separately
for every J p. In doing so we follow the rule that all states
of the same configuration should be treated equally, either
as low-energy or high-energy states. Since for every given
configuration the number of states with different values of J is
different, the values of N1 are also different for every J p. The
search for a compromise between the size of the effective CI
matrix and the accuracy of the results is also done separately
for every J p. Table I shows the parameters used in the present
calculations. The only external parameter chosen “by hands”
is the number of nonrelativistic configurations. The values of
other parameters are calculated. For example, one nonrela-
tivistic configuration 7s26d 2 corresponds to three relativistic
configurations: 7s26d 2

3/2, 7s26d3/26d5/2, and 7s26d 2
5/2. The to-

tal number of states included in the calculations, N1 + N2, also
varies with J p being about 106.

C. Calculation of hyperfine structure

To calculate hfs, we use the time-dependent Hartree-Fock
(TDHF) method, which is equivalent to the well-known
random-phase approximation (RPA). The RPA equations are
the following:

(ĤRHF − ϵc)δψc = −
(

f̂ + δV f
core

)
ψc, (10)

where f̂ is an operator of an external field (an external electric
field, nuclear magnetic dipole, or electric quadrupole fields).
Index c in (10) numerates states in the core, ψc is a single-
electron wave function of the state c in the core, δψc is the
correction to this wave function caused by an external field,
and δV f

core is the correction to the self-consistent RHF potential
caused by changing of all core states. The nucleus is assumed
to be a sphere with a uniform distribution of the nuclear
electric quadrupole moment and the nuclear magnetic dipole
moment. Equation (10) is solved self-consistently for all states
in the core. As a result, an effective operator of the interaction
of valence electrons with an external field is constructed as
f̂ + δV f

core. The energy shift of a many-electron state a, which
is a solution of the CI equations [Eq. (2)], is given by

δϵa = ⟨a|
M∑

i=1

(
f̂ + δV f

core

)
i|a⟩. (11)

When the wave function for the valence electrons comes as a
solution of Eq. (9), Eq. (11) is reduced to

δϵa =
∑

i j

xix j⟨$i|Ĥhfs|$ j⟩, (12)

where Ĥhfs =
∑M

i=1( f̂ + δV f
core )i. For better accuracy of the

results, the full expansion (7) might be used. Then it is conve-
nient to introduce a new vector Z , which contains both X and
Y , Z ≡ {X,Y }. Note that the solution of (9) is normalized by
the condition

∑
i x2

i = 1. The normalization condition for the
total wave function (7) is different,

∑
i x2

i +
∑

j y2
j ≡

∑
i z2

i =
1. Therefore, when X is found from (9), and Y is found from
(8), both vectors should be renormalized. Then the hfs matrix
element is given by the expression, which is similar to (12)
but has many more terms,

δϵa =
∑

i j

ziz j⟨$i|Ĥhfs|$ j⟩. (13)

In the case of one external electron, the calculations can
also be done using the BO,

δϵv =
〈
v
∣∣ f̂ + δV f

core

∣∣v
〉
. (14)

Here v stands for a solution of Eq. (5). Energy shifts (11) and
(14) are used to calculate hfs constants A and B using textbook
formulas:

Aa = g Iδϵ
(A)
a√

Ja(Ja + 1)(2Ja + 1)
, (15)

and

Ba = −2Qδϵ (B)
a

√
Ja(2Ja − 1)

(2Ja + 3)(2Ja + 1)(Ja + 1)
. (16)

Here δϵ (A)
a is the energy shift (11) or (14) caused by the inter-

action of atomic electrons with the nuclear magnetic moment
µ, g I = µ/I , I is nuclear spin; δϵ (B)

a is the energy shift (11)
or (14) caused by the interaction of atomic electrons with the
nuclear electric quadrupole moment Q [Q in (16) is measured
in barns].
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TABLE I. The number of configurations and the size of the ef-
fective CI matrix for Hf and Rf. NNC is the number of nonrelativistic
configurations, NRC is the number of relativistic configurations, and
N1 is the corresponding number of states with given J p .

J p NNC NRC N1

1+ 80 364 726
2+ 80 364 987
3+ 80 364 968
4+ 80 364 784
1− 60 259 470
2− 60 259 605
3− 60 259 566

where I is the unit matrix. Neglecting the off-diagonal ma-
trix elements in D leads to a very simple structure of
the (EaI − D)−1 matrix, (EaI − D)−1

ik = δik/(Ea − Ek ), where
Ek = ⟨k|HCI|k⟩ (see [19] for more details). Equation (9) gives
the same solution as Eq. (6) if the energy parameter Ea in the
left-hand side of (9) has the same value as the solution Ev .
Since the value of Ev is not known in advance, we use an
iterative procedure, E (n )

a = E (n−1)
v , where n is iteration num-

ber. On first iteration one can use a solution of the simplified
equation AX = EaX or use some guess energy. In most cases
less than 10 iterations is sufficient for full convergence.

The relative sizes of blocks A and D can be varied in the
calculations in search of a reasonable compromise between
the accuracy of the results and the computer power needed to
obtain them. In our current calculations, the number of lines
in (9) is ∼ 103.

Note that the CI matrix is different for every combination
of the value of the total angular momentum J and the parity of
the states (J p). Therefore, the choice of the N1 parameter (i.e.,
the size of the effective CI matrix) should be done separately
for every J p. In doing so we follow the rule that all states
of the same configuration should be treated equally, either
as low-energy or high-energy states. Since for every given
configuration the number of states with different values of J is
different, the values of N1 are also different for every J p. The
search for a compromise between the size of the effective CI
matrix and the accuracy of the results is also done separately
for every J p. Table I shows the parameters used in the present
calculations. The only external parameter chosen “by hands”
is the number of nonrelativistic configurations. The values of
other parameters are calculated. For example, one nonrela-
tivistic configuration 7s26d 2 corresponds to three relativistic
configurations: 7s26d 2

3/2, 7s26d3/26d5/2, and 7s26d 2
5/2. The to-

tal number of states included in the calculations, N1 + N2, also
varies with J p being about 106.

C. Calculation of hyperfine structure

To calculate hfs, we use the time-dependent Hartree-Fock
(TDHF) method, which is equivalent to the well-known
random-phase approximation (RPA). The RPA equations are
the following:

(ĤRHF − ϵc)δψc = −
(

f̂ + δV f
core

)
ψc, (10)

where f̂ is an operator of an external field (an external electric
field, nuclear magnetic dipole, or electric quadrupole fields).
Index c in (10) numerates states in the core, ψc is a single-
electron wave function of the state c in the core, δψc is the
correction to this wave function caused by an external field,
and δV f

core is the correction to the self-consistent RHF potential
caused by changing of all core states. The nucleus is assumed
to be a sphere with a uniform distribution of the nuclear
electric quadrupole moment and the nuclear magnetic dipole
moment. Equation (10) is solved self-consistently for all states
in the core. As a result, an effective operator of the interaction
of valence electrons with an external field is constructed as
f̂ + δV f

core. The energy shift of a many-electron state a, which
is a solution of the CI equations [Eq. (2)], is given by

δϵa = ⟨a|
M∑

i=1

(
f̂ + δV f

core

)
i|a⟩. (11)

When the wave function for the valence electrons comes as a
solution of Eq. (9), Eq. (11) is reduced to

δϵa =
∑

i j

xix j⟨$i|Ĥhfs|$ j⟩, (12)

where Ĥhfs =
∑M

i=1( f̂ + δV f
core )i. For better accuracy of the

results, the full expansion (7) might be used. Then it is conve-
nient to introduce a new vector Z , which contains both X and
Y , Z ≡ {X,Y }. Note that the solution of (9) is normalized by
the condition

∑
i x2

i = 1. The normalization condition for the
total wave function (7) is different,

∑
i x2

i +
∑

j y2
j ≡

∑
i z2

i =
1. Therefore, when X is found from (9), and Y is found from
(8), both vectors should be renormalized. Then the hfs matrix
element is given by the expression, which is similar to (12)
but has many more terms,

δϵa =
∑

i j

ziz j⟨$i|Ĥhfs|$ j⟩. (13)

In the case of one external electron, the calculations can
also be done using the BO,

δϵv =
〈
v
∣∣ f̂ + δV f

core

∣∣v
〉
. (14)

Here v stands for a solution of Eq. (5). Energy shifts (11) and
(14) are used to calculate hfs constants A and B using textbook
formulas:

Aa = g Iδϵ
(A)
a√

Ja(Ja + 1)(2Ja + 1)
, (15)

and

Ba = −2Qδϵ (B)
a

√
Ja(2Ja − 1)

(2Ja + 3)(2Ja + 1)(Ja + 1)
. (16)

Here δϵ (A)
a is the energy shift (11) or (14) caused by the inter-

action of atomic electrons with the nuclear magnetic moment
µ, g I = µ/I , I is nuclear spin; δϵ (B)

a is the energy shift (11)
or (14) caused by the interaction of atomic electrons with the
nuclear electric quadrupole moment Q [Q in (16) is measured
in barns].
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features in Fm. In this work we perform similar calculations for 
both atoms. Calculations for Er mostly serve as a guide to the ac- 
curacy of calculations. Calculations for Fm demonstrate that both 
atoms have many properties in common. Some differences in the 
spectra can be explained by stronger relativistic effects in Fm. We 
calculate energy separations for the odd excited states connected 
to the ground state by electric dipole transitions, and the corre- 
sponding transition rates to identify stronger transitions easiest to 
detect. Our calculations are compared with the measurements and 
previous MCDF calculations. 
2. Method of calculation 

We use the recently developed configuration interaction with 
perturbation theory (CIPT) method [17,18] to perform the calcula- 
tions. The method was developed specifically for atoms with open 
shells that have a large number of electrons in open shells. Cor- 
relations between these electrons are treated using the configura- 
tion interaction technique. A set of single-electron basis states used 
for these calculations forms the valence space. The CIPT method 
was successfully used for atoms with open f [19,20] , d [22] and 
p [21] shells. The maximum number of electrons in the valence 
space was sixteen (Yb and No [10,11,19] ). The main idea of the 
method is neglecting off-diagonal matrix elements between high- 
energy states in the CI matrix. The idea is used in several similar 
approaches [23–25] . However, in the CIPT method one more step 
is made, the whole CI matrix is reduced to the effective CI matrix 
of a much smaller size, in which matrix elements between low- 
lying states i and j are corrected by the expression similar to the 
second-order perturbative correction to the energy: 
⟨ i | H CI | j⟩ → ⟨ i | H CI | j⟩ + ∑ 

k 
⟨ i | H CI | k ⟩⟨ k | H CI | j⟩ 

E −E k , (1) 
where E refers to the energy of the state of interest, and E k denotes 
the diagonal matrix element for high-energy states, E k = ⟨ k | H CI | k ⟩ . 
Summation in (1) goes over all high-energy states. The ordering of 
the states on the energy scale is done by the values of E k . This 
ordering can be justified by moving more states from the pertur- 
bative term (second term in (1) ) to the effective CI matrix. The 
energies E and wave functions X are found by solving the matrix 
eigenvalue problem 
(
H CI −EI )X = 0 , (2) 

with H CI matrix given by (1) ; where I is the unit matrix. Reducing 
the matrix size by (1) does not affect the resulting energies as long 
as the energy E is the same in (1) and (2) . Since the energy is not 
known in advance, iterations over energy are needed. Usually five 
to ten iterations are enough for full convergence. 

We use the B-spline technique [26] to build a single-electron 
basis set. These states are constructed as linear combinations of 
B-splines that are eigenstates of the relativistic Hartree-Fock (HF) 
Hamiltonian with the V N−1 potential. The self-consistent HF pro- 
cedure is first done for an atom with one electron removed. For 
instance, the ground state of Er belongs to the [Xe]4 f 12 6 s 2 config- 
uration. The HF procedure is done for the [Xe]4 f 12 6 s configuration, 
and basis states for valence electrons are calculated in the result- 
ing V N−1 potential. Similarly, the [Rn]5 f 12 7 s configuration is used 
in the HF calculations for Fm. We use forty B-splines confined to 
a sphere of the radius R max = 40 a B . Fourteen out of forty lowest- 
energy eigenstates of the HF Hamiltonian are used in the CIPT cal- 
culations. Higher-lying states give only negligible contributions due 
to large energy denominators in (1) . Many-electron basis states for 
the CI calculations are constructed by exciting one or two electrons 
from initial reference valence configurations. For example, to cal- 
culate even states of Er, we use the 4 f 12 6 s 2 configuration as a ref- 
erence. All states of this configuration are used to construct the 

effective CI matrix. All states obtained by single and double excita- 
tions are used in the perturbative term, which is the last term in 
(1) . For odd states, we use four reference configurations 4 f 12 6 s 6 p , 
4 f 12 6 s 7 p , 4 f 11 6 s 2 5 d and 4 f 12 6 s 5 f . All states from these three config- 
urations go to the effective CI matrix while all states obtained by 
exciting electrons from these configurations go to the perturbative 
term. Similarly for Fm, the reference configurations are 5 f 12 7 s 2 for 
even states and 5 f 12 7 s 7 p , 5 f 12 7 s 8 p , 5 f 11 7 s 2 6 d and 5 f 12 7 s 6 f for odd 
states. 

The calculations are fully relativistic. Our single-electron opera- 
tor in the HF and CI Hamiltonians comes from the Dirac equation. 
Moreover, the Breit and quantum electrodynamic corrections are 
included similar to what was done in our previous works [19–22] . 

To calculate amplitudes of electric dipole transitions and hy- 
perfine structure, we need to include an external field in the 
equations. This is the electric field of a photon in case of elec- 
tric dipole transitions or nuclear magnetic or quadrupole elec- 
tric field in case of hfs. We use the time-dependent Hartree- 
Fock method [27] (equivalent to the random-phase approximation 
(RPA)) to do this. The RPA equations are first solved for the atom 
in the same V N−1 approximation as in the HF calculations. The RPA 
equations 
(
H HF −ϵi )δψ i = −(

ˆ d + δV N−1 )ψ i (3) 
are iterated for all atomic states i in the core to find the correction 
to the atomic potential δV N−1 caused by the effect of an external 
field. Transition amplitudes are calculated as 
A ab = ⟨ a | ̂  d + δV N−1 | b⟩ , (4) 
while hfs constants are found from the diagonal matrix elements. 
Here | a ⟩ and | b ⟩ are many-electron states obtained in the CI cal- 
culations (2) , ˆ d is the electric dipole operator (we use the length 
form, ˆ d = −e ∑ 

n r n ) in case of electric dipole transitions or opera- 
tor of nuclear magnetic dipole or electric quadrupole field in case 
of hfs. The rate of spontaneous emission of a photon in the transi- 
tion from state b to state a is given by (in atomic units) 
T ab = 4 

3 ( αω ab ) 3 A 2 
ab 

2 J b + 1 , (5) 
where α is the fine structure constant, ω ab is the frequency of the 
transition. 

The results for energy levels and transition rates for Er are 
presented in Table 1 and compared to experiment. We see that 
the difference between theory and experiment for the energies is 
about a few hundred cm −1 for the states of the 4 f 12 6 s 6 p configu- 
ration and up to 30 0 0 cm −1 for 4 f 11 6 s 2 5 d . Similar accuracy can be 
expected for Fm. Note that the difference in the spectra of Er and 
Fm mostly comes from relativistic effects, while the main source of 
numerical uncertainty is the incomplete treatment of correlations. 
Since Er and Fm have similar electronic structure, it is natural to 
assume that the correlations in both atoms are also similar. The 
same assumption worked well in many earlier calculations (see, 
e.g. [20–22] ). 

A comparison of transition rates with available experimental 
data (see Table 1 ) shows that the accuracy of calculations is sig- 
nificantly lower than for the energies. Most probably this is due 
to the fact that the high-energy states (those participating in the 
last term in (1) ) are not included into the resulting wave function 
in the current version of the computer code. In other words, per- 
turbation theory correction is considered to correct the energies 
but not wave functions. Wave functions are still constructed from 
the reference configurations only (those included in the first part 
of the effective CI Hamiltonian (1) ). In principle, it is possible to 
correct the wave function, too. This might be a subject for future 
work. 
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fective CI matrix for Hf and Rf. NNC is the number of nonrelativistic
configurations, NRC is the number of relativistic configurations, and
N1 is the corresponding number of states with given J p .

J p NNC NRC N1
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where I is the unit matrix. Neglecting the off-diagonal ma-
trix elements in D leads to a very simple structure of
the (EaI − D)−1 matrix, (EaI − D)−1

ik = δik/(Ea − Ek ), where
Ek = ⟨k|HCI|k⟩ (see [19] for more details). Equation (9) gives
the same solution as Eq. (6) if the energy parameter Ea in the
left-hand side of (9) has the same value as the solution Ev .
Since the value of Ev is not known in advance, we use an
iterative procedure, E (n )

a = E (n−1)
v , where n is iteration num-

ber. On first iteration one can use a solution of the simplified
equation AX = EaX or use some guess energy. In most cases
less than 10 iterations is sufficient for full convergence.

The relative sizes of blocks A and D can be varied in the
calculations in search of a reasonable compromise between
the accuracy of the results and the computer power needed to
obtain them. In our current calculations, the number of lines
in (9) is ∼ 103.

Note that the CI matrix is different for every combination
of the value of the total angular momentum J and the parity of
the states (J p). Therefore, the choice of the N1 parameter (i.e.,
the size of the effective CI matrix) should be done separately
for every J p. In doing so we follow the rule that all states
of the same configuration should be treated equally, either
as low-energy or high-energy states. Since for every given
configuration the number of states with different values of J is
different, the values of N1 are also different for every J p. The
search for a compromise between the size of the effective CI
matrix and the accuracy of the results is also done separately
for every J p. Table I shows the parameters used in the present
calculations. The only external parameter chosen “by hands”
is the number of nonrelativistic configurations. The values of
other parameters are calculated. For example, one nonrela-
tivistic configuration 7s26d 2 corresponds to three relativistic
configurations: 7s26d 2

3/2, 7s26d3/26d5/2, and 7s26d 2
5/2. The to-

tal number of states included in the calculations, N1 + N2, also
varies with J p being about 106.

C. Calculation of hyperfine structure

To calculate hfs, we use the time-dependent Hartree-Fock
(TDHF) method, which is equivalent to the well-known
random-phase approximation (RPA). The RPA equations are
the following:

(ĤRHF − ϵc)δψc = −
(

f̂ + δV f
core

)
ψc, (10)

where f̂ is an operator of an external field (an external electric
field, nuclear magnetic dipole, or electric quadrupole fields).
Index c in (10) numerates states in the core, ψc is a single-
electron wave function of the state c in the core, δψc is the
correction to this wave function caused by an external field,
and δV f

core is the correction to the self-consistent RHF potential
caused by changing of all core states. The nucleus is assumed
to be a sphere with a uniform distribution of the nuclear
electric quadrupole moment and the nuclear magnetic dipole
moment. Equation (10) is solved self-consistently for all states
in the core. As a result, an effective operator of the interaction
of valence electrons with an external field is constructed as
f̂ + δV f

core. The energy shift of a many-electron state a, which
is a solution of the CI equations [Eq. (2)], is given by

δϵa = ⟨a|
M∑

i=1

(
f̂ + δV f

core

)
i|a⟩. (11)

When the wave function for the valence electrons comes as a
solution of Eq. (9), Eq. (11) is reduced to

δϵa =
∑

i j

xix j⟨$i|Ĥhfs|$ j⟩, (12)

where Ĥhfs =
∑M

i=1( f̂ + δV f
core )i. For better accuracy of the

results, the full expansion (7) might be used. Then it is conve-
nient to introduce a new vector Z , which contains both X and
Y , Z ≡ {X,Y }. Note that the solution of (9) is normalized by
the condition

∑
i x2

i = 1. The normalization condition for the
total wave function (7) is different,

∑
i x2

i +
∑

j y2
j ≡

∑
i z2

i =
1. Therefore, when X is found from (9), and Y is found from
(8), both vectors should be renormalized. Then the hfs matrix
element is given by the expression, which is similar to (12)
but has many more terms,

δϵa =
∑

i j

ziz j⟨$i|Ĥhfs|$ j⟩. (13)

In the case of one external electron, the calculations can
also be done using the BO,

δϵv =
〈
v
∣∣ f̂ + δV f

core

∣∣v
〉
. (14)

Here v stands for a solution of Eq. (5). Energy shifts (11) and
(14) are used to calculate hfs constants A and B using textbook
formulas:

Aa = g Iδϵ
(A)
a√

Ja(Ja + 1)(2Ja + 1)
, (15)

and

Ba = −2Qδϵ (B)
a

√
Ja(2Ja − 1)

(2Ja + 3)(2Ja + 1)(Ja + 1)
. (16)

Here δϵ (A)
a is the energy shift (11) or (14) caused by the inter-

action of atomic electrons with the nuclear magnetic moment
µ, g I = µ/I , I is nuclear spin; δϵ (B)

a is the energy shift (11)
or (14) caused by the interaction of atomic electrons with the
nuclear electric quadrupole moment Q [Q in (16) is measured
in barns].
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random-phase approximation (RPA). The RPA equations are
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results, the full expansion (7) might be used. Then it is conve-
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Calculation	of	matrix	elements	

RPA	equations:	

Transition	amplitudes:	

Hyperfine	structure	
	
Magnetic	dipole	hfs:	
	
Electric	quadrupole	hfs:	



Breit	and	QED	

HB = −
α1α2 + (α1n)(α2n)

2r
Breit	interaction	(ω=0):	
(magnetic	interaction	and	retardation)	

)(
3
2)()()()()(rad rrrrrr simple

WClfgU Φ+Φ+Φ+Φ+Φ=Φ

Φg(r)   – magnetic formfactor 
Φf(r)    – electric formfactor 
Φl(r)    – low energy electric formfactor 
ΦU(r)   – Uehling potential 
ΦWC(r) – Wichmann-Kroll potential  

QED.	Radiative	potential	method	(Flambaum	and	Ginges,	2005)	
	

V HF →V HF +V B +Φrad

e2 / r→V C,    H B →V BBreit	potential	is	formed:	

Both	potentials	are	included	into	HF:	



Relaxation	effect	in	E119	
(for	Breit	and	QED)	

State	 Energy	
cm-1	

<ψ|HB|ψ>	(no	relaxation)	
cm-1																						%				

ΔEB	(with	relaxation)	
cm-1																						%				

8s	1/2	 -39697	 217	 -0.5%	 38	 -0.1%	

8p	1/2	 -24482	 126	 -0.5%	 67	 -0.3%	

8p	3/2	 -18626	 45	 -0.2%	 8	 -0.04%	

7d	3/2	 -17926	 65	 -0.4%	 -30	 +0.2%	

7d	5/2	 -17422	 46	 -0.3%	 -28	 +0.2%	

State	 Energy	
cm-1	

<ψ|Φrad|ψ>	(no	relaxation)	
cm-1																						%				

ΔErad	(with	relaxation)	
cm-1																						%				

8s	1/2	 -39697	 108	 -0.3%	 78	 -0.2%	

8p	1/2	 -24482	 19	 -0.08%	 7	 -0.03%	

8p	3/2	 -18626	 11	 -0.06%	 4	 -0.02%	

7d	3/2	 -17926	 2	 -0.01%	 -21	 +0.1%	

7d	5/2	 -17422	 3	 -0.02%	 -16	 +0.1%	

Breit	

QED	
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Present	work	

The	use	of	the	CIPT	method	

More	than	10	publications	



Energy	levels	of	Tm	and	Md	
(thulium	and	mendelevium)	

---	4f13	6s2	or	5f13	7s2			

---	4f13	6s6p	or	5f13	7s7p			

---	4f12	5d6s2	or	5f12	6d7s2			



Energy	levels	of	Fm	
(odd	states	connected	to	the	G.S.	by	E1).	

ΔE/E	~	2-4%	

ΔE/E	~	1-1.5%	

---	5f12	7s7p	
---	5f11	6d7s2	

GS:	5f12	7s2			J=6		

Expt.:	Sewtz	et	al,	PRL	90,	163002	(2003)	
												Backe	et	al,	Hyperfine	Interactions	162,	3(2005)	



Ionization	potentials	
(cm-1)	

Atom	 Calculations	 NIST	 Difference	

68Er	 49216	 49262	 0.1%	

69Tm	 50332	 49880	 0.9%	

98Cf	 50821	 50663	 0.3%	

99Es	 51763	 51358	 0.8%	

100Fm	 52902	 52600(1050)	 ~1%	

102Md	 53800	 53100(600)	 ~1%	

Coclusions:	
•  Accuracy	is	good	for	ground	states	
•  Should	be	true	for	HFS	as	well	
•  HFS	of	ground	states	is	sufficient	to	find	A	and	B.	



HFS	of	the	ground	state	of	Dy,	Ho,	Er,	Es.	
Comparison	with	experiment	(MHz).	

Atheor	 Btheor	 Aexpt	 Bexpt	
161Dy	 -113	 1127	 -116.231	 1091.577	
165Ho	 787	 -1943	 800.583	 -1668.089	
167Er	 -117	 -5034	 -120.487	 -4552.984	
253Es	 798	 -5481	 817.153	 -4316.254	

ΔA/A	<	3%	
ΔB/B	~	3-30%	

Expt.:	Childs,	PRA	28,	3402	(1983).	



HFS	of	the	ground	state	of	Cf,	Es,	Fm,	
and	Md	(MHz).		

Atom	 Conf.	 Term	 A	 B	
Cf	 5f10	7s2	 5I8	 608	(µ/I)	 477	Q	
Es	 5f11	7s2	 5Io15/2	 681	(µ/I)	 -818	Q	
Fm	 5f12	7s2	 3H6	 655	(µ/I)	 -1750	Q	
Md	 5f13	7s2	 2Fo7/2	 826	(µ/I)	 -1808	Q	

Similar	accuracy	is	expected.	
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TABLE V: Hyperfine structure constants A and B (in MHz) of the ground states. Nuclear spin I, nuclear magnetic moment
µ(µN ), and nuclear electric quadrupole moment Q(b) values for the isotopes of the 253Es are taken from Ref. [21], while 254Es
and 255Es parameters are taken from Ref. [3]. gI = µ/I. The last column presents references for experimental data of A and
B.

Isotope This work Experimental results.
Nuclear Parameters Conf. Term J A B A B Ref.

253Es
µ= 4.1(7), I= 7/2, Q= 6.7(8) 5f117s2 4Io 15/2 798 -5481 802(18) -3916(550) [3]

817.153(7) -4316.254(76) [23]
254Es

µ= 3.42(7), I= 7, Q= 9.6(1.2) 5f117s2 4Io 15/2 333 -7853 339(4) -6200(300) [3]
255Es

µ= 4.14(10), I= 7/2, Q= 5.1(1.7) 5f117s2 4Io 15/2 806 -4172 824(45) -3001(1400) [3]

TABLE VI: Magnetic dipole (A) and electric quadrupole (B)
hyperfine structure constants of the ground state of Fm and
odd excited states connected to the ground state by elec-
tric dipole transitions. Calculated and experimental energies
(in cm�1), and calculated g-factors are included. Letters S,
P, D in the first column indicate dominating configurations,
5f127s2, 5f127s7p and 5f117s26d respectively.

CIPT Experimental A/gI B/Q
Energy g-factor energy [5, 6] MHz MHz

Ground state, J = 6
S 0 1.1619 655 -1750

Odd states with J = 5
P 20782 1.1505 -1668 -1422
P 23761 1.1834 2693 -446
D 24605 1.1918 1927 -497
P 25512 1.1212 25111.8(0.2) 253 -1787
P 28497 1.1776 27389(1.5) 1449 -1164
P 28715 1.2343 28185(1.5) 3086 135
D 30669 1.1147 553 592

Odd states with J = 6
P 18964 1.2565 2580 -1458
D 19595 1.2846 730 -621
P 20167 1.0880 -752 -1211
D 24638 1.1643 651 -956
P 25397 1.1854 25099.8(0.2) 1850 -1956
P 28663 1.2501 27466(1.5) 3063 406
P 29060 1.1721 28377(1.5) 481 -1885

Odd states with J = 7
D 20128 1.2341 821 -1039
P 20352 1.1953 2823 -1732
D 24267 1.1526 623 -956
P 25143 1.2344 2394 -1775
P 29337 1.1455 28391(1.5) -359 -1080
D 33110 1.1481 439 250
D 33900 1.0641 547 225

(1975).
[2] N. Severijns, A. A. Belyaev, A. L. Erzinkyan, P. -D. Ever-

sheim, V. T. Filimonov, V. V. Golovko, G. M. Gurevich,
P. Herzog, I. S. Kraev, A. A. Lukhanin, V. I. Noga, V. P.
Parfenova, T. Phalet, A. V. Rusakov, M. Tandecki, Yu.
G. Toporov, C. Tramm, E. Traykov, S. Van Gorp, V. N.
Vyachin, F. Wauters, D. Zákoucký, and E. Zotov, Hy-

TABLE VII: Estimated uncertainties of calculated hfs con-
stants A and B of Fm based an the analysis of the results
of similar calculations for Er (see Table VI of Ref. [7]). The
uncertainties depend on the dominating configuration (S, P,
D as in Table VI).

A B
S ⇠ 1% ⇠ 10%
P ⇠ 1% ⇠ 10%
D ⇠ 10% ⇠ 200%
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More	on	Fm	

HFS	was	measured	before	

S	=	5f12	7s2	
P	=	5f12	7s	7p	
D	=	5f11	6d	7s2	

HFS	was	measured	before	

HFS	was	measured	before	

Expt.:	Sewtz	et	al,	PRL	90,	163002	(2003)	
												Backe	et	al,	HI	162,	3(2005)	



The	CIPT	method	is	a	valuable	tool	in	
studying	open-shell	atoms	and	helping	
fundamental	research	in	many	ways.	

Conclusion	


