Calculations for heavy atoms with open shells: energy levels and hyperfine structure of Cf, Es, Fm, and Md.

Vladimir Dzuba,

Saleh Allehabi, Victor Flambaum
University of New South Wales, Sydney, Australia Jiguang Li, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China

Present work
Atoms with $\mathrm{Z>}>97$ have open $5 \mathrm{f}, 7 \mathrm{~s}, 6 \mathrm{~d}$ or/and 7 p shells. Number of valence electrons from 1 to 16. Standard Cl technique would not work!

The CIPT method

(configuration interaction with perturbation theory)
V. A. Dzuba, J. C. Berengut, C. Harabati, and V. V. Flambaum , PRA 95, 012503 (2017))

The structure of the Cl matrix

Use $V^{\mathrm{N}-1}$ as good initial approximation

$$
\begin{aligned}
\Psi= & \sum_{i} c_{i} \Phi_{i}+\sum_{m} c_{m} \Phi_{m} \\
& \text { Small correction }
\end{aligned}
$$

Has small number of terms
Neglecting the off-diagonal m.e. corresponds to neglecting the third-order terms

$$
\delta E_{g}=\sum_{i, j} \frac{\langle g| H^{\mathrm{CI}}|i\rangle\langle i| H^{\mathrm{CI}}|j\rangle\langle j| H^{\mathrm{CI}}|g\rangle}{\left(E_{g}-E_{i}\right)\left(E_{g}-E_{j}\right)}
$$

Suppressed by large energy denominators

The idea is not new and gaining popularity.

- E. A. Parpia, C. Froese Fischer, I. P. Grant, GRASP92, CPC 94, 249 (1996).
$\left(\begin{array}{cc}\mathbf{H}_{00} & \mathbf{H}_{01} \\ \mathbf{H}_{10} & \operatorname{diag}\left(\mathbf{H}_{11}\right)\end{array}\right)$
(3.15)
- E. V. Kahl, J. C. Berengut, Emu CI, CPC 238, 232 (2019).
- M. G. Kozlov, I. I. Tupitsyn, A. I. Bondarev, D. V. Mironova PRA 105, 052805 (2022).
- Etc...

Current implementation (the CIPT method)

$$
\begin{align*}
& \left(H^{\mathrm{CI}}-E I\right) X=0, \tag{1}\\
& \langle i| H|j\rangle \rightarrow\langle i| H|j\rangle+\sum_{m} \frac{\langle i| H|m\rangle\langle m| H|j\rangle}{E-E_{m}} \tag{2}
\end{align*}
$$

Eqs. (1) and (2) give exact solution for the shown Cl matrix if energy E in (1) an (2) are the same.
l.e., iterations are needed.

Only first iteration takes time since the numerator can be saved and reused.

Neglecting the off-diagonal m.e. is the only assumption!

Limitations of the CIPT method

- Only low-lying states can be calculated.
- Calculations are sensitive to the initial approximation. This may lead to different accuracy for different states.

Small correction Has small number of terms

- Core-valence correlations are not included.
- Half-filled f-shell is hard to treat.

First two limitations can be eased by increasing the size of the effective Cl matrix.

In contrast, core-valence correlations require special consideration.

Special use of the CIPT approach: increasing efficiency of the CI+MBPT method.

$$
N_{\text {eff }} \sim 1-100 ; N_{\text {total }} \sim 10^{7}-10^{8}
$$

\sim_{5} electrons, $V^{\mathrm{N}-\mathrm{M}}$

$$
N_{\text {eff }} \sim 10^{3}-10^{4} ; \quad N_{\text {total }} \sim 10^{6}
$$

- The use of V^{N-M} allows to include core-valence correlations.
- The use of CIPT allows to go to larger number of electrons.

Calculation of matrix elements

RPA equations:

$$
\left(\hat{H}^{\mathrm{RHF}}-\epsilon_{c}\right) \delta \psi_{c}=-\left(\hat{f}+\delta V_{\text {core }}^{f}\right) \psi_{c},
$$

Transition amplitudes: $\quad A_{a b}=\langle a| \hat{d}+\delta V^{N-1}|b\rangle$,

Hyperfine structure

$$
\delta \epsilon_{v}=\langle v| \hat{f}+\delta V_{\text {core }}^{f}|v\rangle
$$

Magnetic dipole hfs:

$$
A_{a}=\frac{g_{I} \delta \epsilon_{a}^{(A)}}{\sqrt{J_{a}\left(J_{a}+1\right)\left(2 J_{a}+1\right)}},
$$

Electric quadrupole hfs:

$$
B_{a}=-2 Q \delta \epsilon_{a}^{(B)} \sqrt{\frac{J_{a}\left(2 J_{a}-1\right)}{\left(2 J_{a}+3\right)\left(2 J_{a}+1\right)\left(J_{a}+1\right)}}
$$

Breit and QED

Breit interaction ($\omega=0$):
(magnetic interaction and retardation)

$$
H_{B}=-\frac{\alpha_{1} \alpha_{2}+\left(\alpha_{1} n\right)\left(\alpha_{2} n\right)}{2 r}
$$

Breit potential is formed: $\quad e^{2} / r \rightarrow V^{\mathrm{C}}, \quad H^{\mathrm{B}} \rightarrow V^{\mathrm{B}}$

QED. Radiative potential method (Flambaum and Ginges, 2005)
$\Phi_{\mathrm{rad}}(r)=\Phi_{U}(r)+\Phi_{g}(r)+\Phi_{f}(r)+\Phi_{l}(r)+\frac{2}{3} \Phi_{W C}^{\text {simple }}(r)$

$\Phi_{g}(r)$ - magnetic formfactor
$\Phi_{f}(r)$ - electric formfactor
$\Phi_{1}(r)$ - low energy electric formfactor
$\Phi_{U}(r)$ - Uehling potential
$\Phi_{\mathrm{Wc}}(\mathrm{r})$ - Wichmann-Kroll potential

Both potentials are included into HF: $\quad V^{\mathrm{HF}} \rightarrow V^{\mathrm{HF}}+V^{\mathrm{B}}+\Phi_{\mathrm{rad}}$

Relaxation effect in E119

(for Breit and QED)

Breit	State	Energy cm^{-1}	$\begin{array}{cc} <\Psi\left\|H^{\mathrm{B}}\right\| \Psi> & \text { (no relaxation) } \\ \mathrm{cm}^{-1} & \% \\ \hline \end{array}$		$\begin{array}{cc} \Delta E_{\mathrm{B}} \text { (with relaxation) } \\ \mathrm{cm}^{-1} & \% \end{array}$	
	8s 1/2	-39697	217	-0.5\%	38	-0.1\%
	8p 1/2	-24482	126	-0.5\%	67	-0.3\%
	8p 3/2	-18626	45	-0.2\%	8	-0.04\%
	7d 3/2	-17926	65	-0.4\%	-30	+0.2\%
	7d 5/2	-17422	46	-0.3\%	-28	+0.2\%
QED	State	$\begin{gathered} \text { Energy } \\ \mathrm{cm}^{-1} \end{gathered}$	$\begin{gathered} \langle\psi\| \Phi_{\mathrm{rad}}\|\psi\rangle \text { (no relaxation) } \\ \mathrm{cm}^{-1} \\ \% \end{gathered}$		$\begin{array}{cc} \Delta E_{\text {rad }} \text { (with relaxation) } \\ \mathrm{cm}^{-1} & \% \end{array}$	
	8s 1/2	-39697	108	-0.3\%	78	-0.2\%
	8p 1/2	-24482	19	-0.08\%	7	-0.03\%
	8p 3/2	-18626	11	-0.06\%	4	-0.02\%
	7d 3/2	-17926	2	-0.01\%	-21	+0.1\%
	7d 5/2	-17422	3	-0.02\%	-16	+0.1\%

The use of the CIPT method

Present work
More than 10 publications \square

Energy levels of Tm and Md

(thulium and mendelevium)

$$
\begin{aligned}
& ---4 f^{13} 6 s^{2} \text { or } 5 f^{13} 7 s^{2} \\
& ---4 f^{13} 6 s 6 \text { p or } 5 f^{13} 7 s 7 p
\end{aligned}
$$

--- $4 f^{12} 5 d 6 s^{2}$ or $5 f^{12} 6 d 7 s^{2}$

Energy levels of Fm

(odd states connected to the G.S. by E1).

Expt.: Sewtz et al, PRL 90, 163002 (2003)
Backe et al, Hyperfine Interactions 162, 3(2005)

Ionization potentials (cm ${ }^{-1}$)

Atom	Calculations	NIST	Difference
${ }_{68} \mathbf{E r}$	49216	49262	0.1%
${ }_{69} \mathbf{T m}$	50332	49880	0.9%
${ }_{98} \mathbf{C f}$	50821	50663	0.3%
${ }_{99}$ Es	51763	51358	0.8%
${ }_{100}$ Fm	52902	$52600(1050)$	$\sim 1 \%$
${ }_{102} \mathbf{M d}$	53800	$53100(600)$	$\sim 1 \%$

Coclusions:

- Accuracy is good for ground states
- Should be true for HFS as well
- HFS of ground states is sufficient to find A and B.

HFS of the ground state of Dy, Ho, Er, Es. Comparison with experiment (MHz).

	A $_{\text {theor }}$	B $_{\text {theor }}$	A $_{\text {expt }}$	B $_{\text {expt }}$
${ }^{161} \mathrm{Dy}$	-113	1127	-116.231	1091.577
${ }^{165} \mathrm{Ho}$	787	-1943	800.583	-1668.089
${ }^{167} \mathrm{Er}$	-117	-5034	-120.487	-4552.984
${ }^{253} \mathrm{Es}$	798	-5481	817.153	-4316.254

Expt.: Childs, PRA 28, 3402 (1983).
$\Delta A / A<3 \%$
$\Delta B / B \sim 3-30 \%$

HFS of the ground state of Cf, Es, Fm, and $\mathrm{Md}(\mathrm{MHz})$.

Atom	Conf.	Term	A	B
Cf	$5 f^{10} 7 s^{2}$	${ }^{5} I_{8}$	$608(\mu / I)$	477 Q
Es	$5 f^{11} 7 s^{2}$	${ }^{5} \boldsymbol{l}^{\circ}{ }_{15 / 2}$	$681(\mu / I)$	-818 Q
Fm	$5 f^{12} 7 s^{2}$	${ }^{3} H_{6}$	$655(\mu / I)$	-1750 Q
Md	$5 f^{13} 7 s^{2}$	${ }^{2} \mathrm{~F}^{\circ}{ }_{7 / 2}$	$826(\mu / I)$	-1808 Q

Similar accuracy is expected.

Conclusion

The CIPT method is a valuable tool in studying open-shell atoms and helping fundamental research in many ways.

