
Modern finite-element methods applied to
non-relativistic atomic calculations

Susi Lehtola

University of Helsinki, Finland

18 October 2022



Basis sets in chemistry

Most quantum chemical calculations are performed with atomic
basis sets

I linear combination of atomic orbitals (LCAO) approach

The LCAO approach has many benefits

I compact basis, only tens–few hundred functions per atom

I all-electron calculations feasible!

I straightforward chemical interpretation

I (usually) systematic error cancellation =⇒ relative energies
order(s) of magnitude more accurate than total energies
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Basis sets: cardinal number

The quality of the basis is typically reported in terms of the
cardinal number n. For instance, for oxygen (1s22s22p4)

I single-ζ, minimal basis (MB); 2s1p

I polarized double-ζ (pVDZ) →: 3s2p1d

I polarized triple-ζ (pVTZ) →: 4s3p2d1f

I polarized quadruple-ζ (pVQZ) → 4s3p2d1f

I polarized quintuple-ζ (pV5Z) → 5s4p3d2f1g

I polarized hextuple-ζ (pV6Z) → 6s5p4d3f2g1h

I . . .
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Basis sets: quality

Linear combination of atomic orbitals (LCAO) often yields reliable
results at low cost
I single-ζ: qualitative results; symmetry of ground state wave

function?
I atoms can’t breathe or polarize =⇒ useless for chemistry

I double-ζ: semi-quantitative accuracy for DFT

I triple-ζ: semi-quantitative accuracy for DFT, ”minimal basis”
for post-Hartree–Fock calculations

I quadruple-ζ and higher
I excellent accuracy for DFT, ”basis set limit”; useful for

benchmark studies
I good for post-HF; should also extrapolate to CBS
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Types of radial basis sets
The atomic basis sets are of the form

ψnlm = Rnl(r)Ylm(r̂)

I almost all quantum chemistry is done with Gaussian basis sets

Rnl(r) =
∑
k

dknr
l exp(−αk r

2)

I Slater orbitals found usually in textbooks, not in practice

Rnl(r) = r l exp(−ζnr)

I numerical atomic orbitals (NAOs) typically not even
mentioned
I but approach common in solid-state physics in density

functional calculations (with pseudopotentials / PAWs)
I all-electron approaches: proprietary Dmol3, FHI-aims programs
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Promise of numerical orbitals

NAOs are promising for quantum chemistry

I limited applications so far with high-level methods, e.g.
coupled-cluster theory

I NAOs have local support: ψ(r) = 0 for r > r∞ =⇒ better
sparsity for molecular integrals

I modern parallel computers excellent for quadrature

Oµν =

∫
χµ(r)Ôχν(r)d3r =

∑
p

wpχµ(rp)Ôχν(rp)

Few systematic basis sets published so far

I limited to density functional calculations

I established methods for building Gaussian basis sets can be
used to build NAO basis sets

I could e.g. pseudopotentials / PAW setups be generated with
higher-accuracy calculations?
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History of atomic and diatomic calculations

Fully numerical approaches have a long history in quantum
chemistry both for atoms and diatomic molecules, as discussed in a
recent review paper (696 references).
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Limitations of existing approaches

Most programs are limited

I low-order numerical methods require O(104–105) radial points
to converge energy tightly i.e. to sub-µEh level

I self-consistent field convergence slow (large # of dofs!), no
modern convergence accelerators used

I programs have only had few density functionals, no support
for hybrid functionals and/or meta-GGA functionals

I usually not parallellized and written in Fortran 77

Computers and algorithms have developed a lot in the past 40
years =⇒ new implementations beneficial
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New code: HelFEM

I have written a finite element program for electronic structure
calculations on atoms and diatomic molecules: ĤelFEM or
HelFEM. A version of the code is available on GitHub
(https://github.com/susilehtola/HelFEM).
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Note language barrier!

Quantum chemistry and atomic physics are closely related
disciplines separated by the same language
I quantum chemists’ Hartree–Fock 6= atomic physicists’

Hartree–Fock
I single-configuration = single-determinant vs

single-configuration = multi-determinant

I physicists’ Hartree–Fock = chemists’ multiconfigurational
self-consistent field (MCSCF) or complete active space (CAS)

I physicists’ multiconfiguration Hartree–Fock = chemists’ state
interation configuration interaction

I chemists’ single-determinant calculations typically break
symmetry for open-shell atoms
I single-determinant HF yields lower energies than

multideterminant HF (Löwdin’s symmetry dilemma!); radial
orbitals not spin-restricted

I need flexible approaches to describe symmetry breaking
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New code: HelFEM, cont’d

HelFEM follows the standard LCAO-type quantum chemistry
formulation – full diagonalization is possible even with tens of
thousands of numerical basis functions. Variational results
guaranteed; symmetry breaking can be studied.

Further benefit: maximal reuse of code from Gaussian programs,
include powerful convergence acceleration methods, e.g. Pulay
DIIS and GDM.

Hundreds of LDA, GGA, and meta-GGA functionals supported via
Libxc.
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Fock matrix

Standard LCAO quantum chemistry formulation: Fock matrix is
given by

F(C) = T + V + J(C)−K(C)

where T is kinetic energy, V is nuclear attraction, J(C) is Coulomb
matrix, and K(C) is exchange matrix. In addition, S is overlap.

Fock matrix F̂ depends on the electron density: F = F(C) =⇒
minimization of the total energy is a difficult problem. But,
problem is independent of basis set

I We can adopt a variety of algorithms for accelerating
self-consistent field convergence in LCAO calculations

I Employ modern convergence accelerators: ADIIS followed by
DIIS. Also other choices possible.
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New code: HelFEM, cont’d

Code is still actively worked upon. Current capabilities

I spin-restricted, spin-restricted open shell and spin-unrestricted
calculations

I quick SCF convergence with ADIIS+DIIS

I Hartree–Fock or DFT with LDA, GGA and meta-GGA
functionals including global hybrids

I range separated hybrids also supported in the case of atoms
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Basis set limit

In LCAO, the electronic orbitals (1-particle states) are written in
terms of basis functions as

|ψ〉 =
∑
i

〈i |ψ〉 |i〉 =
∑
i

ci |i〉

The expansion implicitly assumes that the basis set is complete∑
i

|i〉 〈i | = 1

which is never really the case, since the basis is finite.

Basis set limit: Addition of more basis functions changes result
only negligibly. Easy to do in a fully numerical approach.
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Finite elements

Fully numerical calculations employ basis sets that are not
motivated by chemistry.

Finite elements: divide space into regions, represent functions
(electronic structure) within each region. Glue the element
functions together so continuity is ensured.

Elements can be of various sizes and accuracies. How do we
describe the electronic structure within a single element?
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Lagrange interpolating functions (LIPs)

Math formulation: we have a region ξ ∈ [ξ0, ξ1] where we want to
represent function f (ξ). How to formulate a suitable basis to do
this with arbitrary accuracy?

Simplest solution: Lagrange interpolating polynomials (LIPs).
Choose a set of control points ξi on the interval. Identify the value
f (ξi ) at any point to arise from a single LIP:

φi (ξj) = δij

which is solved by

φi (ξ) =
∏
k 6=i

ξ − ξk
ξi − ξk

Function is approximated on interval as

f (ξ) ≈
∑
j

f (ξj)φj(ξ)

SuperHeavy 2022, Paris, 24 Oct 2022 Susi Lehtola 16/28



2-node LIPs

For two nodes in an element, we get the triangle functions, since
the function value has to be continuous over the edges of the
elements. (Function 2 continued to the right becomes function 1,
since both are defined by the same control node.)
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3-node LIPs

For three nodes, we get the following. The function corresponding
to the middle node is purely in-element.
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6-node LIPs

Six-node LIPs are quintic polynomials.
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LIPs with Lobatto nodes

Going to higher order elements it becomes beneficial to employ
non-uniform nodes, as this yields better numerical stability. An
especially accurate basis is obtained by choosing the nodes from
Gauss–Lobatto quadrature, e.g. six-node ones look like
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Convergence

Very accurate solutions can be obtained with suitable tuning of the
radial element grid. Example: Hartree–Fock energy for Og atom
(Z = 118) with a polynomial (left) or exponential (right) grid,
with 5, 10, 20, 40, 80, and 160 six-node elements.
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Convergence, cont’d

The accuracy can be further increased by using higher-order
elements. Example: Hartree–Fock energy for Kr (Z = 36) and Xe
(Z = 54) atoms with various elements.

10−9

10−7

10−5

10−3

10−1

10

103

∆
E

0 20 40 60 80 100 120 140 160 180 200

Nrad

2 nodes
4 nodes
6 nodes
8 nodes
10 nodes
12 nodes
14 nodes
16 nodes
18 nodes
20 nodes

10−9

10−7

10−5

10−3

10−1

10

103

∆
E

0 20 40 60 80 100 120 140 160 180 200

Nrad

2 nodes
4 nodes
6 nodes
8 nodes
10 nodes
12 nodes
14 nodes
16 nodes
18 nodes
20 nodes

I nEh level accuracy achievable with just O(100) radial
functions
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New initial guesses

HelFEM has been used to generate atomic potentials for an
alternative initial guess for electronic structure calculations: use
sum of converged atomic V (r) to initialize calculations on
polyatomic systems.
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Fractional occupations

The atomic approach has recently been extended to
range-separated exchange functionals (error function or Yukawa
kernel) as well as fractional occupations that make density
spherically symmetric nσ = nσ(r)

Resulting finite element calculations afford accurate atomic
potentials for use in SAP guess.

SuperHeavy 2022, Paris, 24 Oct 2022 Susi Lehtola 24/28



Atomic configurations

Physicists’ density functional calculations on atoms usually employ
fractional occupations

I same technique used in atomic Hartree–Fock for forming
initial guesses for polyatomic systems (both SAP and SAD)

Problem: using fractional occupations changes the functional;
what are the corresponding occupations for the ground state?
I new ground states identified for non-relativistic Hartree–Fock

I spin-restricted calculations, nα(r) = nβ(r): Phys. Rev. A 101,
012516 (2020); doi:10.1103/PhysRevA.101.012516

I spin-unrestricted calculations, nα(r) 6= nβ(r): J. Chem. Phys.
152, 144105 (2020); doi:10.1063/5.0004046

I differences found for transition metals and
lanthanides/actinides; new configurations yield much better
guesses than experimental ground state

SuperHeavy 2022, Paris, 24 Oct 2022 Susi Lehtola 25/28



Atoms and density functionals
Atomic calculations can also be used to assess density functionals
I a good density functional should

1. allow accurate energy of the total energy
Exc =

∫
n(r)εxc(n, . . . )d3r at fixed density

2. allow converging the density tightly in a fixed basis set in a
SCF calculation

3. converge quickly to the complete basis set limit when running
larger and larger basis sets

The work in HelFEM on density functionals revealed issues in
many functionals; several recent ones fail already for criterion 1!
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Wrapup
Current status

I modern numerical methods allow for extremely compact radial
expansions

I orbitals converge within a dozen iterations with established
self-consistent field accelerators

I convergence can be speeded up by using guess orbitals from
pretabulated potentials

On-going work
I new modular libraries for electronic structure theory

I implement state-of-the-art orbital optimizers and convergence
accelerator algorithms in a method-agnostic manner

I implement atomic guesses in a portable manner

Future work

I include electron correlation with CASSCF/RASSCF

I extend to relativistic (X2C or four-component) calculations
and finite nuclei
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