
Reducing the Computational Load - Atomic
Multiconfiguration Calculations based on
Configuration State Function Generators

(in Grasp2018)

Yanting Li1,2, Per Jönsson2, Gediminas Gaigalas3,
Chongyang Chen1, Kai Wang1, Ran Si1, Michel Godefroid4

1Fudan U., Shangai, China
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The CompAS International Collaboration
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P. Jönsson, G. Gaigalas, C.Y. Chen, M. Godefroid,
S. Fritzsche, J. Marques, J. Ekman, J.E. Sienkiewicz, P. Syty,
H. Hartman, Gustafsson, L. Radžiūtė, A. Papoulia, P. Rynkun,
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CompAS meeting in Malmö (June 2016)
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EMMI-SHE Workshop Aims and Topics

SHE Workshop Aims and Topics

May we contribute?
Paul’s reply: “Of course, look at our website!”

I It is well known that even relatively light atoms like Ni have a
complicated structure that we still cannot calculate accurately.

I If we go to heavy or super-heavy elements, with several open
shells with high-l values, it is going to be even more difficult.
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CPC, 283 (2023) 108562
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Configuration Interaction calculations

Configuration Interaction (CI) calculations: the atomic wave
function is expanded in CSFs

Ψ(ΓJMJ) =
M∑
i=1

cγi Φ(γiJMJ).

CSFs are all-electron antisymmetrized and symmetry-adapted
functions constructed from products of relativistic one-electron
orbitals.
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Configuration Interaction calculations

Applying the variational condition on the expansion coefficients
leads to an eigenvalue problem

(H − E I )cT = 0,

where c = (c1, c2, . . . , cM) is the vector of expansion coefficients

H is the Hamiltonian matrix with elements

Hij = 〈Φ(γiJMJ)|HDCB|Φ(γjJMJ)〉

of the Dirac-Coulomb-Breit (DCB) Hamiltonian.
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Configuration Interaction calculations

A major part of the calculation is to construct the Hamiltonian
matrix.

Spin-angular integration resolves the matrix element into a
combination of radial integrals and interaction strengths

Hij = 〈Φ(γiJMJ)|HDCB|Φ(γjJMJ)〉

=
∑
ab

t ijabI (a, b) +
∑
abcd ;k

v ij
abcd ;kR

k(ab, cd)︸ ︷︷ ︸
Dirac-Coulomb

+
∑
abcd ;k

w ij
abcd ;kX

k(ab, cd),︸ ︷︷ ︸
Breit

t ijab, v ijabcd ;k and w ij
abcd ;k are the spin-angular coefficients, evaluated

by methods and programs developed by G. Gaigalas (Vilnius U.)
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Accuracy of CI calculations

A sad fact of life:
Accurate (reliable) CI calculations require huge amount of CSFs
based on large orbital sets.
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CI calculations - bottlenecks

I Large number of CSFs, time consuming to construct the
Hamiltonian matrix

I Large number of CSFs, time consuming to compute the
expectation values

I Large files with CSFs, disk will soon get full
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Where to save CPU time?

Zero- and first-order techniques (“Zero-First CI”).
Divide the CSFs space into the zero-order space of size M, which
accounts for the most important effects, and the first-order space
of size N, that can be viewed as corrections to the zero-order
space. Neglect the off-diagonal matrix elements between the CSFs
in the first-order space.

Gustafsson et al., Atoms 5 (2017) 3

M N
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Where to save CPU time?

I Spin-angular integration gives spin-angular coefficient.

I Spin-angular coefficients combined with radial integrals give
the matrix element.

I Computation of radial integrals is fast. Saved in memory.

I Spin-angular integration needs to be done for each matrix
element. 107 CSFs means that we need to perform
spin-angular integration for 1014 matrix elements (“Ugah”).

I Due to the large number of matrix elements, spin-angular
integration is computationally expensive.
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Where to save CPU time?

I Spin-angular integration is independent of the principal
quantum numbers.

I Using so called Configuration State Function Generators
(CSFGs), spin-angular coefficients from one matrix element
can be saved and used for the computation of matrix elements
for a full group of CSFs.

I Potential reduction in CPU time is large
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The notion of CSFGs

I Divide CSF space in a labeling space and a correlation space.

I CSFs in labeling space obtained allowing
SDTQ. . . excitations from a MR according to some general
rule to a set of highly occupied orbitals in shell-closing order,
e.g.

{1s, 2s, 2p-, 2p, 3s, 3p-, 3p, 3d-, 3d}.

These CSFs account for major correlation effects due to close
degeneracies and long-range interactions.

Yanting Li et al. Reducing the Computational Load in Grasp



The notion of CSFGs – cont.

I CSFs in correlation space obtained by SD excitations from
the above MR to a set of symmetry-ordered correlation
orbitals

4s, 5s, 6s, 7s︸ ︷︷ ︸
κ=−1

, 4p-, 5p-, 6p-, 7p-︸ ︷︷ ︸
κ=+1

, 4p, 5p, 6p, 7p︸ ︷︷ ︸
κ=−2

, 4d-, 5d-, 6d-, 7d-︸ ︷︷ ︸
κ=+2

, 4d , 5d , 6d , 7d︸ ︷︷ ︸
κ=−3

.

CSFs in correlation space account for short range interactions
and dynamical correlation. Correlation space is normally much
larger than the labeling space.
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CSFGs

I The correlation space can be divided into groups of CSFs
obtained by orbital de-excitations within the
symmetry-ordered orbital set from CSFGs, that preserve the
spin-angular coupling.

I The CSFGs are simply CSFs at which the principal quantum
numbers of orbitals in the symmetry-ordered set are taken at
their highest values.
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Four different types of CSFGs

Type 1: CSFs with one orbital in symmetry-ordered orbital set

1s ( 2) 2s ( 1) 4p-( 1)

1/2 1/2

0-

1s ( 2) 2s ( 1) 5p-( 1)

1/2 1/2

0-

....

1s ( 2) 2s ( 1) 7p-( 1)

1/2 1/2

0-

CSFs generated by orbital de-excitations from the following CSFG

1s ( 2) 2s ( 1) 7p-( 1)

1/2 1/2

0-
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Four different types of CSFGs

Type 2: CSFs with two orbitals in symmetry-ordered orbital set,
different symmetry

1s ( 2) 4s ( 1) 4p-( 1)

1/2 1/2

0-

1s ( 2) 4s ( 1) 5p-( 1)

1/2 1/2

0-

....

1s ( 2) 7s ( 1) 7p-( 1)

1/2 1/2

0-

CSFs generated by orbital de-excitations from the following CSFG

1s ( 2) 7s ( 1) 7p-( 1)

1/2 1/2

0-
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Four different types of CSFGs

Type 3: CSFs with two orbitals in symmetry-ordered orbital set,
same symmetry, different n

2s ( 1) 2p-( 1) 4s ( 1) 5s ( 1)

1/2 1/2 1/2 1/2

1 1/2 0-

2s ( 1) 2p-( 1) 4s ( 1) 6s ( 1)

1/2 1/2 1/2 1/2

1 1/2 0-

............

2s ( 1) 2p-( 1) 6s ( 1) 7s ( 1)

1/2 1/2 1/2 1/2

1 1/2 0-

CSFs generated by orbital de-excitations from the following CSFG

2s ( 1) 2p-( 1) 6s ( 1) 7s ( 1)

1/2 1/2 1/2 1/2

1 1/2 0-
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Four different types of CSFGs

Type 4: CSFs with a doubly occupied orbital in symmetry-ordered
orbital set

2s ( 1) 2p-( 1) 4s ( 2)

1/2 1/2

0 0-

2s ( 1) 2p-( 1) 5s ( 2)

1/2 1/2

0 0-

................

2s ( 1) 2p-( 1) 7s ( 2)

1/2 1/2

0 0-

CSFs generated by orbital double de-excitations from the following
CSFG

2s ( 1) 2p-( 1) 7s ( 2)

1/2 1/2

0 0-
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List of CSFs vs lists of CSFGs

I In the ordinary GRASP program we work with lists of CSFs
(three lines of configuration and coupling information for each
CSF). Huge number of CSFs mean / very big files of CSFs.

I In new GRASP programs we work with lists of CSFGs. Same
format as for the CSFs but we need a lot less as each CSFG
spans a set of CSFs.
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Program for generating list of CSFGs

rcsfgenerate_sym

Works as the ordinary program rcsfgenerate and produces
rcsf.out
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Constructing the Hamiltonian matrix

I Old rci program: matrix elements constructed one by one.
Spin-angular integration done for each matrix element

I New rci program: all matrix elements between CSFs
generated by one or two CSFGs are computed at the same
time.

I Spin-angular integration done only once. Spin-angular
coefficients saved and used in the computation of all matrix
elements where the radial integrals are found from the fast
process of orbital de-excitation.
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CSF in labeling space and CSFG type 1

Spin-angular integration resolves matrix element between

1s ( 2) 2s ( 1) 2p-( 1)

1/2 1/2

0-

and

1s ( 2) 2s ( 1) 7p-( 1)

1/2 1/2

0-

in

1.000000000 I(2p-,7p-)

1.000000000 R0(2s 2p-,2s 7p-)

-0.333333333 R1(2s 2s ,7p-2p-)

2.000000000 R0(1s 2p-,1s 7p-)

-0.333333333 R1(1s 1s ,7p-2p-)

Yanting Li et al. Reducing the Computational Load in Grasp



CSF in labeling space and CSFG type 1

Coupling matrix elements with the three remaining CSFs

1s ( 2) 2s ( 1) 6p-( 1)

1s ( 2) 2s ( 1) 5p-( 1)

1s ( 2) 2s ( 1) 4p-( 1)

generated by the CSFG follow by keeping the spin-angular
coefficients and multiplying with appropriate radial integrals found
by de-excitations of 7p−.
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CSF in labeling space and CSFG type 2

Spin-angular integration resolves matrix element between

1s ( 2) 2s ( 1) 2p-( 1)

1/2 1/2

0-

and

1s ( 2) 7s ( 1) 7p-( 1)

1/2 1/2

0-

into

1.000000000 R0(2s 2p-,7s 7p-)

-0.333333333 R1(2s 2p-,7p-7s )
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CSF in labeling space and CSFG type 2

Matrix elements with the 15 remaining CSFs generated by the
CSFG follow by keeping the spin-angular coefficients and
multiplying with appropriate radial integrals found by appropriate
de-excitations of 7s and 7p−.
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Time comparisons

CI calculations for states of 1s22s22p63s3p in Mg I with the
Dirac-Coulomb (DC) and the Dirac-Coulomb-Breit Hamiltonian
(DCB).

CSF space, SD excitations from 1s22s22p6[3s3p + 3p3d ] to
increasing sets of symmetry-ordered orbitals.

CI based on CSFs CI based on CSFGs CPU ratio
orbital set CSF CPU(DC) CPU(DCB) CSFG CPU(DC) CPU(DCB) CSF/CSFG DC DCB

{5s, 5p, 5d, 5f , 5g} 271 588 3m59s 7m10s 115 340 1m19s 3m22s 2.4 3.0 2.1
{6s, 6p, 6d, 6f , 6g, 6h} 682 291 23m3s 42m1s 153 583 3m24s 8m52s 4.3 7.1 4.8
{7s, 7p, 7d, 7f , 7g, 7h} 1 287 898 86m13s 150m33s 158 527 6m52s 17m50s 8.1 12.2 8.4
{8s, 8p, 8d, 8f , 8g, 8h} 2 088 409 233m6s 445m52s 158 527 14m24s 35m28s 13.2 16.6 12.6
{9s, 9p, 9d, 9f , 9g, 9h} 3 083 824 376m6s 950m36s 158 527 19m25s 66m45s 19.4 19.8 14.4

{10s, 10p, 10d, 10f , 10g, 10h} 4 274 143 1074m38 2008m57s 158 527 44m13s 110m48s 26.9 24.0 18.2
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Time comparisons

I Breit-interaction time consuming

I Time reduction factor of 24 for DC.

I Time reduction factor of 18 for DCB.

I The larger the orbital set, the larger the time reduction
(great!)
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Where to save CPU time?

I The Breit-interaction per orbital decreases rapidly with
increasing n and l of the orbitals

I We can put limitations on l for the Breit integrals with small
changes in the computed transition energies.

I Reduces the CPU time drastically
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Time comparisons

States of {4s24p64d2, 4s24p64d5s, 4s24p65s2, 4s24p64d5p} in
Zr III. CSF space is formed by SD excitations from the above

configurations to increasing sets of symmetry-ordered orbitals.

CI based on CSFs CI based on CSFG
orbital set CSF CPU(full) CSFG CPU(spd) CPU(full) CPU ratio

{7s, 7p, 6d, 5f , 5g} 597 155 18m12s 265 939 9m6s 10m.39s 2
{8s, 8p, 7d, 6f , 6g, 6h} 1 560 620 109m31 375 373 21m25s 28m20s 5.1
{9s, 9p, 8d, 7f , 7g, 7h} 2 991 680 399m30s 389 305 32m51s 52m33s 12.2
{10s, 10p, 9d, 8f , 8g, 8h} 4 890 335 1032m39s 389 305 50m4s 94m42s 20.6
{11s, 11p, 10d, 9f , 9g, 9h} 7 256 585 1590m49s 389 305 81m10s 173m35s 19.6
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Time comparisons

Corresponding energies

state ∆E(DC) ∆E(sp) ∆E(spd) ∆E(spdf) ∆E(spdfg) ∆E(full)

4d2 3F2 0 0 0 0 0 0

4d2 3F3 697.49 700.59 662.34 662.59 662.67 662.72

4d2 3F4 1526.61 1533.24 1451.62 1452.07 1452.30 1452.43

4d2 1D2 6064.01 6093.25 6034.29 6034.81 6034.88 6034.95

4d2 3P0 8434.63 8439.31 8417.93 8418.38 8418.46 8418.55

4d2 3P1 8699.76 8705.61 8669.28 8669.91 8670.03 8670.13

4d2 3P2 9227.18 9236.72 9164.87 9165.50 9165.77 9165.94

4d2 1G4 11635.51 11647.15 11588.07 11588.26 11588.38 11588.46

4d5s 3D1 18427.19 18644.38 18494.60 18496.36 18496.78 18497.01

4d5s 3D2 18848.69 19067.13 18898.51 18900.39 18900.86 18901.12

4d5s 3D3 19601.54 19823.64 19615.82 19617.90 19618.47 19618.80

4d2 1S0 25292.46 25354.96 25269.45 25270.67 25270.74 25270.84

4d5s 1D2 25610.69 25799.49 25629.29 25631.21 25631.68 25631.94
. . . . . . . . . . . . . . . . . . . . .

4d5p 3P2 60663.40 60877.03 60679.64 60681.72 60682.27 60682.57

4d5p 1F3 63288.69 63486.24 63309.35 63311.48 63311.96 63312.23

4d5p 1P1 63436.43 63647.94 63451.48 63453.63 63454.19 63454.52
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Time comparisons

I Reducing the orbitals to spd in the Breit integrals cuts the
CPU time with a factor of 2.

I The change in transition energies is negligible, i.e. very good
approximation.
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Where to save CPU time?

I We can further reduce the CPU time by removing CSFs that
are unimportant. This is known as “condensation”.
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Where to save CPU time?

A priori condensations

I We can condense by including only CSFs that interact (have
non-zero matrix elements) with the CSFs in the MR.
Argument based on Z -dependent perturbation theory.
May not work well for neutral or near-neutral systems!

(In GRASP this is done by running rcsfinteract)

I Reduces number of CSFs by a factor of 2 -3
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Where to save CPU time?

A posteriori condensations

I Perform a CI for the full CSF space but using zero- and first
interaction to reduce the CPU time (“Zero-First CI”),

I Sort the mixing coefficients of the CSFs and accumulate until
a predefined fraction is reached
(this is done by rmixaccumulate in GRASP )

I From this accumulation process, we get the condensed CSFs
space for which we include all interactions.

I Works fine but we need to first perform the Zero-First CI in
the full CSF space.
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Where to save CPU time?

A priori condensations based on CSFGs

I Perform a CI with a limited set of symmetry-ordered orbitals

I Assign each CSFG a squared weight equal to the sum of the
squared weights of the generated CSFs

I Sort the mixing coefficients of the CSFGs and accumulate
until a predefined fraction is reached.

I To have a condensed expansion for a larger orbital set we just
take the surviving CSFGs and set the principal quantum
numbers to the highest values of the new orbital set.

I This is basically an a priori method. Can be done by the new
version rmixaccumulate sym.
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Time comparisons

States of {4s24p64d2, 4s24p64d5s, 4s24p65s2, 4s24p64d5p} in
Zr III. CSF space is formed from increasing sets of CSFGs.

condensation interact 0.999925 0.99995 0.99999 0.999995 full CSF space
CSF 2 674 196 2 396 072 2 694 053 4 031 414 4 593 618 7 256 585

CSF ratio 2.7 3.0 2.7 1.8 1.6 1
CPU 45m44s 37m29s 39m12s 60m46s 70m36s 173m35s

CPU ratio 3.8 4.6 4.4 2.9 2.5 1

4d2 3F2 0 0 0 0 0 0.00

4d2 3F3 836.07 687.98 678.19 666.47 664.62 662.72

4d2 3F4 1565.51 1447.43 1448.21 1451.66 1451.89 1452.43

4d2 1D2 6120.68 6064.93 6053.86 6037.56 6035.98 6034.95

4d2 3P0 8841.72 8432.57 8427.83 8422.48 8420.54 8418.55

4d2 3P1 8916.92 8686.67 8680.06 8672.69 8671.38 8670.13
...

4d5p 3D3 57443.66 57560.35 57546.73 57533.59 57532.56 57531.93

4d5p 3F4 57764.47 57783.66 57777.48 57774.15 57773.92 57774.07

4d5p 3P1 60218.01 60192.97 60187.48 60182.16 60181.59 60181.01

4d5p 3P0 60488.82 60307.24 60308.09 60314.18 60314.49 60315.03

4d5p 3P2 60634.12 60726.18 60710.12 60687.35 60684.89 60682.57

4d5p 1F3 63302.40 63337.66 63326.81 63314.24 63313.01 63312.23

4d5p 1P1 63890.18 63479.51 63468.35 63456.53 63455.26 63454.52
fract. error 2.2 % 0.25 % 0.15 % 0.035 % 0.017 % 0 .00 %
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Where to save CPU time?

I Condensation based on interaction with CSFs in the MR does
not work well.

I Condensation based on CSFGs and accumulation to a
predefined fraction is a very powerful a priori condensation
method!

I Putting everything together: CSFGs, restrictions for the
orbitals in the Breit integrals and condensations based on
accumulation to a predefined fraction, we may reduce the
CPU time with a factor 60-70 for large calculations without
affecting the transition energies.
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Connection to zero- and first order methods

In the zero- and first order method we include only the diagonal
elements between CSFs in the first order space.

Gustafsson et al., Atoms 5 (2017) 3
M N
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Connection to zero- and first order methods

A better approximation, but still fast, is obtained by including
off-diagonal matrix elements between CSFs within CSFG block of
the first order space. This is a block-diagonal approach.

Geddes et al., PRA 98 (2018) 042508

M N
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Partitioned correlation function interaction (PCFI)

Verdebout et al., JPB 46(2013) 085003
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Optimally localized orbital sets in 1s22s2 1S in Be

0 1 2 3 4 5 6
-2

-1

0

1

2

r(a.u.)

P
(r

)
valence correlation

1 2 3 4 5 6

r(a.u.)

core valence correlation

1 2 3 4 5 6

r(a.u.)

core correlation
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PCFI for 1s22s2 1S in Be

Tabell: |1s22s2 1S〉, |1s22p2 1S〉, |ΛVV 〉︸ ︷︷ ︸
200 CSFs

, |ΛCV 〉︸ ︷︷ ︸
900 CSFs

, |ΛCC 〉︸ ︷︷ ︸
1000 CSFs

.

Energies are compared with CAS-MCHF results based on a single
orthonormal orbital set.

n ≤ E5×5 ECAS−MCHF

4 −14.660 679 48 −14.661 403 17
5 −14.665 553 46 −14.664 839 93
6 −14.666 582 83 −14.666 067 32
7 −14.666 905 87 −14.666 541 14
8 −14.667 047 86 −14.666 857 41
9 −14.667 122 76 −14.667 012 75

10 −14.667 168 08 −14.667 114 20

I CAS-MCHF 650 000 CSFs, days on a super computer cluster

I Optimally localized orbital sets, a few hours on a PC.
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Connecting PCFs with Super-CSFs and CSFGs

In the PCFI method (Verdebout et al., JPB 46(2013) 085003)),
we introduced the concept of Partitioned Correlation Functions.
These PCFs can be generalized as Super-CSFs.

A Super-CSF can be taken as a linear combination of a subspace
of CSFs spanned by a CSFG.

Example:

|Super-CSF〉 = c1|1s22s8p〉+c2|1s22s9p〉+c3|1s22s10p〉+c4|1s22s11p〉

{c1, . . . , c4} can be determined perturbatively or in a smaller rci
calculation based on a divide and conquer algorithm.
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Connecting PCFs with Super-CSFs and CSFGs

I The use of Super-CSFs reduces the size of the Hamiltonian
matrix: we add one basis function instead of 4

I The matrix element between an ordinary CSFs and a
Super-CSF can be evaluated very efficiently using our new
methods.

I The use of Super-CSFs constructed from spatially adapted
radial orbitals have shown very efficient in describing the
energy structure of a system.

Yanting Li et al. Reducing the Computational Load in Grasp



CSFGs allow physical interpretation

The effect on expectation values can be tracked for a group of
CSFs belonging to a CSFG

We can check the effect of the CSFs spanned by the symbolic CSF
on e.g. hfs or isotope shift parameters

1s ( 2) 2s ( 1) 7p-( 1)

1/2 1/2

0-

We can learn and understand what correlation effects are important
for different properties. Program for this would be very similar to
the new rmixaccumulate sym code but now we rank the CSFGs
according to their contribution to the computed property.
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Thank you for your attention!
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