EMMI workshop day 2 wrap-up Maximiliano Puccio (CERN)

Bologna 14 Feb 2023

0.008 evaluated value: 212 ± 19 ps (scaled by 1.10) 0.007-0.006density [(ps)⁻¹] 0.005-0.004-Probability 0.003-0.002-0.001-0 200

 $^{3}_{\Lambda}$ H lifetime τ [ps]

Let's get something straight

 $^{3}_{\Lambda}$ H Λ binding energy [MeV]

Perspective for more precise hypertriton binding energy

Hypertriton search with Mask R-CNN

Two body decay of ³_AH

Simulated image

 $50 \mu m$

Real image

Training dataset (Simulated images) Mask Image

$50 \mu m$

Projected precision: 28 keV

Ayumi Kasagi. Ph.D. thesis (2023)

Perspective for more precise hypertriton binding energy

Binding energy for ${}^4_{\Lambda}$ H

- Mass with range of ⁴He
- Emulsion calibration (density and shrinkage) for each event
- Checking coplanarity and inner-product
- Only 0.4 % of the entire data

Similar analysis for hypertriton (to be published soon)

Ayumi Kasagi. Ph.D. thesis (2023)

11

WASA-FRS HypHI prospective

Expected performances

Expected results by updated MC simulations:

- 4 days measurement

[T.R,Saito et al., Nature Reviews Physics 3, 803-813 (2021)]

14/03/2023

hypernuclear programs @ GSI

C. Rappold

Mass resolution

- 3.2 MeV/c² (1 T field)
- 1.5 times better than HypHI —

Statistics

- ~ 5800 in the peak for 4 days
- 38 times more than HypHI
- **Expected Lifetime accuracy**
 - 8 ps
 - 5 times better than HypHI

Multi-strange hypernuclei: theory calls

Nijmegen ESC08c version

Hiyama et al. PRL 124 (2020) 092501: $A \le 4 \equiv$ hypernuclei Substantial model dependence

HAL-QCD: LQCD calculation at $m_{\pi(K)}=146(525)$ MeV

Sasaki et al. NPA 998 (2020) 121737

Inoue et al. AIPCP 2130 (2019) 020002: $V_{\Xi}^{LQCD}{=}4{\pm}2~MeV$ Kohno, PRC 100 (2019) 024313: $V_{\Xi}^{EFT} \approx 10 \text{ MeV}$

17

A. Gal

HAL-QCD version

Measurement of s-wave Xi hypernucleus required

Experiment answer?

Observation of *s***-state** Ξ **hypernucleus** ?

H. Tamura

Caution:

Theories seem to agree with the data, but they used the BNL suggestion of $U_{\pm} \sim -15 MeV$.

Why E survives until it cascades down to the Os orbit ??

=> Gal's talk

Or maybe not?

$1s_{\Xi}$ reinterpreted as $1p_{\Xi^0}$

Studies at JLab for LambdaNN

Sho Nagao

 \succ Expected resolution $\sigma = 1.3$ MeV, $\delta E = 0.4$ MeV

- No robust peak (2.7σ)
- Upper-limits 21 nb sr⁻¹ (90% C.L.)

Not only hypernuclei

Size of $d^*(2380)$ $\blacksquare \Rightarrow \text{elm excitation of } d^* \qquad \text{ed} \rightarrow \text{ed}^* \rightarrow \text{ed}\pi^0 \pi^0$ Observation at other installations • HADES (*a*) GSI: but no full 4π • IHEP ?? $e^+e^- \rightarrow d d^* at 4.3 - 4.6 \text{ GeV }??$ ■ KEK, JPARC, LHCb, others ??? Astrophysical relevance? (M. Bashkanov, York) Are there more (exotic) dibaryons? • D_{30} mirror state of d* strange, charmed and beautiful dibaryons??

H. Clement

Outlook and Open Problems

17

Production models

Coalescence or not Coalescence?

Tom Reichert

Caution: canonical correction in SHM can introduce correlations due to the conservation of quantum numbers.

 3 He \rangle t)

Event by event selection of collisions with large isospin imbalance can help to distinguish between statistical hadronisation (SHM) and coalescence!

arXiv:2204.10166

Kinetic production + MST

Kinetic vs. potential deuteron production

Excitation function dN/dy of deuterons at midrapidity

The potential mechanism is dominant for d production at all energies!

E. Bratkovskaya

PHQMD provides a good description of STAR data on d yield at midrapidity

The role of annihilations in the (anti)nuclei yields

Baryon annihilation and other mechanisms are complementary

It explain antiprotons!

Will it work for antinuclei?

21

Beyond u,d,s: charm baryons and molecules

J. Stachel

22

Beyond u,d,s: charm baryons and molecules

the multi-charm hierarchy

open and hidden charm hadrons, incl c-deuteron, c-triton, pentaquark, Ω_{ccc}

emergence of a unique pattern, due to g_cⁿ and mass hierarchy perfect testing ground for deconfinement for LHC Runs3 and beyond

J. Stachel, EMMI Workshop Bologna February 14, 2023

J. Stachel

open and hidden charm hadrons, including exotic objects, such as X-states,

Thanks a lot for the interesting workshop