Day One Wrap Up

Alberto Calivà

University of Bologna

ALICE results

L. Barioglio (University of Turin)

Discontinuity at dN/d $\eta \approx 80$: maybe the trend is not universal

ALICE results

arXiv:2211.15204

ALICE results

L. Barioglio (University of Turin)

More precise measurements in run 3 3-body decay will be measured \rightarrow measurement of the BR PRL 128 (2022) 252003

Latest developments on coalescence

K. J. Sun (Fudan University)

Quantum-mechanical corrections on light nuclei production due to finite nuclei sizes are observed at LHC and RHIC

Latest developments on coalescence

K. J. Sun (Fudan University)

Hadronic re-scattering effects particularly relevant for the triton yield \rightarrow Triton disintegration rate > regeneration rate

Latest developments on coalescence

K. J. Sun (Fudan University)

arXiv:2207.12532(2022)

Novel kinetic approach to light nuclei production in high-energy nuclear collisions, with the inclusion of many-body scatterings and finite nuclei sizes

Triton yield in Pb+Pb collisions at 5.02 TeV is consistent with the hadronic re-scattering effect. More statistics are needed

Through this approach, the overestimation on triton production in the thermal model can be resolved after taking into account the effect of hadronic re-scatterings.

M. Bleicher (University of Frankfurt)

nucleon	Δ		Λ	Σ	[1]	Ω	
N_{938}	Δ_{1232}	Λ_{11}	116	Σ_{1192}	Ξ_{1317}	Ω_{1672}	
N_{1440}	Δ_{1600}	$ \Lambda_{14}$	405	Σ_{1385}	Ξ_{1530}		
N_{1520}	Δ_{1620}	$ \Lambda_{13}$	520	Σ_{1660}	Ξ_{1690}		
N_{1535}	Δ_{1700}	$ \Lambda_{16}$	600	Σ_{1670}	Ξ_{1820}		
N_{1650}	Δ_{1900}	$\mid \Lambda_{16}$	670	Σ_{1775}	Ξ_{1950}		
N_{1675}	Δ_{1905}	$ \Lambda_{16}$	690	Σ_{1790}	Ξ_{2025}		
N_{1680}	Δ_{1910}	$ \Lambda_{18}$	300	Σ_{1915}			
N_{1700}	Δ_{1920}	$ \Lambda_{18}$	810	Σ_{1940}			
N_{1710}	Δ_{1930}	$ \Lambda_{18}$	820	Σ_{2030}			
N_{1720}	Δ_{1950}	$ \Lambda_{18}$	830				
N_{1900}		$ \Lambda_{18}$	890				
N_{1990}		Λ_{22}	L00				
N_{2080}		Λ_{22}	110				
N_{2190}							
N_{2200}							
N_{2250}							
	-						
0-+	1		0++			1^{++}	
π			0.			0	

0-+		0++	
π	ρ	a_0	a_1
K	K^*	K_0^*	K_1^*
$\mid \eta \mid$	ω	f_0	f_1
η'	ϕ	f_0^*	f_1'
1+-	2^{++}	$(1^{})^*$	$(1^{})^{**}$
b_1	a_2	$ ho_{1450}$	$ ho_{1700}$
K_1	K_2^*	K^{*}_{1410}	K^*_{1680}
h_1	f_2	ω_{1420}	ω_{1662}
h_1'	f_2'	ϕ_{1680}	ϕ_{1900}

- 1.8 1.4 1.2 qu 1.0 0.6 0.4 0.2 0.0 1.3 1.6 1.4 $qu_{1.0}^{1.2}$ 0.6 0.4 0.2
- Cross sections are taken from data or models
- Resonances are implemented in Breit-Wigner form
- No in-medium modifications
- Detailed balance

• Binary interactions between all implemented particles are treated

M. Bleicher (University of Frankfurt)

URQMD + coalescence hybrid model > Good description of low energy data (small systems)

M. Bleicher (University of Frankfurt)

- URQMD + coalescence converge toward Thermal model (curves are missing hydro stage)
- Calculations for large energy
- $\mu_{\rm B}$ = 0 at LHC: matter and antimatter are produced in equal amounts

M. Bleicher (University of Frankfurt)

 ρ^0 broadening effect is a measure of the lifetime of the hadronic phase

Antiprotons in our Galaxy and at colliders

Nicolò Masi (University of Bologna)

Antiprotons in our Galaxy and at colliders

Nicolò Masi (University of Bologna)

- AMS-02 results are still compatible with a secondary production but DM signals could in principle still hide within the overall error band.
- With the nuclear measurements effort we will be capable of extracting a possible DM signal.
 - Helium channels are responsible for almost 40% of the antiproton production
 - AMBER will improve our knowledge of the production of cosmic antiprotons with kinetic energy up to 50 GeV with supposed 5% errors

The COMPASS/AMBER experiment is a fixedtarget experiment at located in the M2 beamline of the SPS.

Apparatus for Meson and Baryon **Experimental Research**

AMBER proton beam: from a 60 GeV/c up to 250 GeV/c. The goal is to measure the double differential (momentum and pseudo-rapidity) anti-p cross production from p+He (and p+H) at different proton momenta (60, 100, 150, 190, 250 GeV/c) on a fixed LHe (and LH2) target.

The calibration run occurred last May 2022 and the first test run in November. The first data taking is scheduled for May/June 2023.

Latest developments of PHQMD

Susanne Glaessel (University of Frankfurt)

= n-body microscopic transport approach for the description of heavy-ion dynamics with dynamical cluster formation from low to ultra-relativistic energies

J. Aichelinet al., PRC 101 (2020) 044905

Cluster formation algorithm searches for accumulations of particles in coordinate space > Two particles i & j are bound if: $|r_i-r_j| < 4.0$ fm

Latest developments of PHQMD

Susanne Glaessel (University of Frankfurt) Light cluster production at $\sqrt{s_{NN}} = 3$ GeV

- No tuning to experimental data
- for hypernuclei the description is a bit worse

• Good description of spectra, yields and particle ratios for different center-of-mass energies

M. Horst (Technical University of Munich)

Deuteron coalescence depends on:

- particle-emitting source size (measured in HM pp) \bigcirc
- Deuteron wave function
- Imput nucleon spectra (measured)

Advanced coalescence

M. Horst (Technical University of Munich)

Good description of the interaction with \succ Fermi-Dirac statistics, Coulomb and strong interaction (using v18) Only free parameter: the source size When done as a function of m_{τ} \succ *r*₀ (fm) 1.6 ALICE pp $\sqrt{s} = 13 \text{ TeV}$ 1.5 High-mult. (0-0.17% INEL>0) Gaussian Source 1.4 1.3 1.2 1.1 $p-\Lambda$ (NLO $p-\Lambda$ (LO) 0.9 1.2 1.4 1.6 1.8 2.2 2.4 2.6 2 ALICE Coll., PLB 811 (2020) 135849 $\langle m_{\rm T} \rangle$ (GeV/c²)

Advanced coalescence

M. Horst (Technical University of Munich)

Advanced coalescence

Antinuclei propagation and annihilation

L. Šerkšnytė (Technical University of Munich)

Antinuclei propagation and annihilation

L. Šerkšnytė (Technical University of Munich)

Antimatter-to-matter ratio

• Measure reconstructed ${}^{3}\overline{\text{He}}/{}^{3}\text{He}$ and compare with MC simulations

TOF-to-TPC-matching

Antinuclei propagation and annihilation

L. Šerkšnytė (Technical University of Munich)

Publicly available at: <u>https://galprop.stanford.edu</u>.

Antinuclei with AMS-02

A. Oliva (INFN of Bologna)

> very challenging measurements

Antinuclei with AMS-02

Antinuclei with GAPS

Alessio Tiberio (INFN of Florence)

GAPS: Balloon-borne experiment designed to detect antideuteron and antihelium-3 below 250 MeV/n as evidence for DM

Experimental apparatus composed of a time-offlight (ToF) system surrounding a tracker

Antinuclei with GAPS

Alessio Tiberio (INFN of Florence)

Precision measurement of antiproton spectrum in an unexplored low energy region

GAPS will also measure antideuteron spectrum > sensitive to a wide range of DM models

Antinuclei with GAPS

Alessio Tiberio (INFN of Florence)

Sensitivity to antihelium-3

> 1 single antihelium-3 event at low energy would be a signature of new physics