

Mechanisms for deuteron production in heavy-ion collisions

Elena Bratkovskaya (GSI, Darmstadt & Uni. Frankfurt)

Gabriele Coci, Susanne Gläßel, Viktar Kireyeu, Joerg Aichelin, Vadym Voronyuk, Christoph Blume, Vadim Kolesnikov, Jan Steinheimer, Marcus Bleicher

EMMI Workshop "4th Workshop on Anti-Matter, Hyper-Matter and Exotica Production at the LHC", University of Bologna, Italy, 13-17 February 2023

1

The ,holy grail' of heavy-ion physics:

The phase diagram of QCD

Experimental observables: ... Clusters and (anti-) hypernuclei

- EMD: Ch. Hartnack
- projectile/target spectators heavy cluster formation
- midrapidity → light clusters -

! Hyperons are created in participant zone

(Anti-) hypernuclei production:

- at mid-rapidity by coalescence of Λ with nucleons during expansion
- at projectile/target rapidity by rescattering/absorption of Λ by spectators

High energy HIC:

,Ice in a fire' puzzle: how the weakly bound objects can be formed and survive in a hot enviroment ?!

2

Modeling of cluster and hypernuclei formation

Existing models for cluster formation:

- □ statistical model:
 - assumption of thermal equilibrium
- □ coalescence model:

- determination of clusters at a freeze-out time by coalescence radii in coordinate and momentum space don't provide information on the dynamical origin of cluster formation

→ cf. talk by Tom Reichert

In order to understand the microscopic origin of cluster formation one needs a realistic model for the dynamical time evolution of the HIC

→ transport models:

dynamical modeling of cluster formation based on interactions:

- via potential interaction 'potential' mechanism cf. talk by Susanne Glässel
- -- by scattering 'kinetic' mechanism

PHQMD

PHQMD: a unified n-body microscopic transport approach for the description of heavy-ion collisions and dynamical cluster formation from low to ultra-relativistic energies

<u>Realization:</u> combined model **PHQMD** = (PHSD & QMD) & (MST/SACA)

Where are the clusters formed during heavy-ion collisions?

MST vs. coalescence in PHQMD and UrQMD

- The normalized distribution of the freeze-out time of baryons (nucleons and hyperons) which are finally observed at mid-rapidity |y|<0.5</p>
- * Here freeze-out time as defined by the last elastic or inelastic collision, after that only potential interaction between baryons occurs

- Freeze-out time of baryons in Au+Au at 1.5 AGeV and 40 AGeV:
- similar profile since expansion velocity of mid-rapidity fireball is roughly independent of the beam energy

- ❑ The MST snapshot (taken at time 30 and 70 fm/c) of the normalized distribution of the transverse distance r_T of the nucleons to the center of the fireball.
- □ It is shown for A=1 (free nucleons) and for the nucleons in A=2 and A=3 clusters

Transverse distance profile of free nucleons and clusters are different!

Clusters are mainly formed behind the 'front' of free nucleons of expanding fireball

→ 'ice' is behind the 'fire' → cluster can survive

Comparison of the coalescence and MST for d applied to PHQMD and UrQMD

- **\rightarrow** Coalescence and MST give very similar multiplicities and y- and p_T -distributions
- → PHQMD and UrQMD results in the cascade mode are very similar
- Deuteron production is sensitive to the realization of potential in transport approaches

PHQMD & UrQMD: Comparison of the coalescence and MST for d

Coalescence as well as the MST procedure show that the deuterons remain in transverse direction closer to the center of the heavy-ion collision than free nucleons
 deuterons are behind the fast nucleons (and pion wind)

PHQMD: Comparison of the coalescence and MST for d PHQMD

MST

At mid-rapidity only 20% of coalescence deuterons (at freeze-out) are found by **MST** (asymptotically)

Rapidity and p_T distributions from MST and coalescence have a different shape → make it possible to be distinguishable in experiments!

Viktar Kireyeu, in progress

10

Kinetic mechanism for deuteron production in PHQMD

Gabriele Coci et al., in preparation

Deuteron production by hadronic reactions

"Kinetic mechanism"

- 1) hadronic inelastic reactions NN $\leftrightarrow d\pi$, π NN $\leftrightarrow d\pi$, NNN $\leftrightarrow dN$
- 2) hadronic elastic π +d, N+d reactions

□ Hadronic reactions for d+ π and d+N scattering have very large cross sections $\sigma_{peak} \approx 200$ mb

□ the rates for the inverse processes pNN →pd, NNN→dN in hadronic matter are large due to the time-reversal symmetry

* Kinetic production by inverse reaction N + p + n → N + d first studied in HICs at E_{Lab} ~ 1 AGeV by P.J. Siemens, J. Kapusta PRL 43 (1979) 1486

Models for deuteron production by hadronic reactions

Collision Integral: covariant rate formalism

 Covariant collision rate for deuteron production for 3→2 reactions is the number of reactions in the covariant volume d⁴x = dt*dV:

 $\frac{dN_{coll}[3+4+5 \to 1(d)+2]}{dtdV} = \int \left(\prod_{k=3}^{5} \frac{d^{3}p_{k}}{(2\pi)^{3}2E_{k}} f_{k}(x,p_{k})\right) \times \qquad \begin{array}{l} 024913, \ (2018) \ 044907 \\ \\ \mbox{PHSD: Multi-meson fusion reactions} \\ m_{1}+m_{2}+...+m_{n} \leftarrow \Rightarrow B+Bbar \\ m=\pi,\rho,\omega,.. \ B=p,\Lambda,\Sigma,\Xi,\Omega, \ (>2000 \ channels) \\ \\ \mbox{} \int \frac{d^{3}p_{1}}{(2\pi)^{3}2E_{1}} \int \frac{d^{3}p_{2}}{(2\pi)^{3}2E_{2}} W_{3,2}(p_{3},p_{4},p_{5};p_{1},p_{2})(2\pi)^{4} \ \delta(p_{1}+p_{2}-p_{3}-p_{4}-p_{5}) \end{array}$

W. Cassing, NPA 700 (2002) 618

E. Seifert, W. Cassing, PRC 97 (2018)

Using the assumption that the transition amplitude depends only on invariant energy :
$$W(\sqrt{s})$$
 and using a detailed balance, the covariant collision rate can be expressed in terms of the reaction probability $P_{2,3}$ which is proportional to $2\rightarrow 3$ total cross sections

With test particle ansatz the transition rate for $3 \rightarrow 2$ reactions in cells of volume ΔV_{cell} is:

$$\frac{\Delta N_{coll}[3+4+5 \rightarrow 1(d)+2]}{\Delta N_3 \Delta N_4 \Delta N_5} = P_{3,2}(\sqrt{s})$$
Energy and momentum 2,3-body phase space integrals of final particles [Byckling, Kajantie]
$$P_{3,2}(\sqrt{s}) = F_{spin}F_{iso}P_{2,3}(\sqrt{s}) \frac{E_1^f E_2^f}{2E_3 E_4 E_5} \frac{R_2(\sqrt{s}, m_1, m_2)}{R_3(\sqrt{s}, m_3, m_4, m_5)} \frac{1}{\Delta V_{cell}}$$

$$P_{2,3}(\sqrt{s}) = \sigma_{tot}^{2,3}(\sqrt{s})v_{rel}\frac{\Delta t}{\Delta V_{cell}}$$

Reaction probability $2 \rightarrow 3 \sim \text{total cross sections for } 2 \rightarrow 3 \text{ reaction}$

PHQMD: deuteron reactions in the box

Density inside the box at temperature T: $\rho_i = n^{eq}(T) * \lambda_i(t)$

Isospin deuteron reactions in the box

→ Detailed balance condition fulfilled

Kinetic deuterons in PHQMD – isospin effects

Modelling of deuteron finite-size effects in kinetic mechanism

How to account for the quantum nature of deuteron, i.e. for

- 1) the finite-size of *d* in coordinate space (*d* is not a point-like particle) for in-medium d production
- 2) the momentum correlations of *p* and *n* inside *d*

Realization 1) assume that a deuteron can not be formed in a high density region, i.e. if there are other particles (hadrons or partons) inside the 'excluded volume':

Excluded-Volume Condition:

$$|\vec{r}(i)^* - \vec{r}(d)^*| < R_d$$

"i" is any particle not participating in $\pi NN \rightarrow \pi d$, $NNN \rightarrow Nd$, $NN \rightarrow d\pi$ * means that positions are in the cms of pre-calculated "candidate" deuteron

The exclusion parameter R_d is tuned to the physical radius

$$\left\langle r_d^2 \right\rangle = \int_0^\infty r^2 |\phi_d(r)|^2 dr \sim (1.8 \, fm)^2$$

Strong reduction of d production!

p_T slope is not affected by excluded volume condition

Modelling of deuteron finite-size effects in kinetic mechanism

Strong reduction of d production by projection on DWF $|\phi_d(p)|^2$

Total deuteron production = Kinetic mechanism with finite-size effects

+ MST (with stabilization) identification of deuterons ("stable" bound (E_B<0) A=2, Z=1 clusters)

- ❑ Kinetic deuterons: finite-size effects (momentum projection + excluded volume) lead to a strong suppression of deuteron production at all energies
- Shape of y-distribution is different for different mechanisms of d production!

Total deuteron production = Kinetic mechanism with finite-size effects

PHOMD

+ MST (with stabilization) identification of deuterons ("stable" bound (E_B<0) A=2, Z=1 clusters)

Good description of mid-rapidity NA49 data [PRC 94 (2016) 04490699]

Total deuteron production = Kinetic mechanism with finite-size effects

+ MST (with stabilization) identification of deuterons ("stable" bound (E_B<0) A=2 , Z=1 clusters)

Total d = Kinetic mechanism with finite-size effects + MST (with stabilization) identification of d

→ Good description of mid-rapidity STAR data [PRC 99, (2019)]

PHQMD provides a good description of STAR data on d yield at midrapidity
 The potential mechanism is dominant for d production at all energies!

The PHQMD is a microscopic n-body transport approach for the description of heavy-ion dynamics and cluster and hypernuclei formation

combined model PHQMD = (PHSD & QMD) & (MST | SACA)

- Clusters are formed dynamically by potential interactions among nucleons and hyperons and identified by Minimum Spanning Tree model
- □ **Kinetic mechanism** for deuteron production is implemented in the PHQMD with inclusion of full isospin decomposition for hadronic reactions which enhances d production
- However, accounting for the quantum properties of the deuteron, modelled by the finite-size excluded volume effect in coordinate space and projection of relative momentum of the interacting pair of nucleons on the deuteron wave-function in momentum space, leads to a strong reduction of d production, especially at target/projectile rapidities
- The PHQMD reproduces cluster and hypernuclei data on dN/dy and dN/dp_T as well as ratios d/p and $\overline{d}/\overline{p}$ for heavy-ion collisions from AGS to top RHIC energies (cf. talk by Susanne Glässel)

A detailed analysis reveals that stable clusters are formed

- shortly after elastic and inelastic collisions have ceased
- behind the front of the expanding energetic hadrons
- since the 'fire' is not at the same place as the 'ice', cluster can survive
- **PHQMD** and UrQMD give very similar coalescence and MST distributions of deuterons
- □ Shape of y-and p_T- distributions depends on a production mechanism → possibility to distinguish between production mechanisms experimentally!

Thank you for your attention !

Thanks to the Organizers !

https://phqmd.gitlab.io/

(under construction)