Y-Nucleus potentials from Hypernuclei

EMMI Workshop, Bologna, Feb. 2023

Avraham Gal, Hebrew University, Jerusalem, Israel

ANN vs. AN content of V_A A V_A^{opt} applied to $1s_A$, $1p_A$ states, $12 \le A \le 208$, suggests ≈ 14 MeV repulsive ΛNN component, thereby constraining the 'hyperon puzzle'. E. Friedman, A. Gal, PLB 837 (2023) 137669

 V_{Ξ} from Ξ^- capture events

All five KEK & J-PARC $\Xi^- + {}^{A}Z \rightarrow {}^{A'}_{\Lambda}Z' + {}^{A''}_{\Lambda}Z''$ capture events in light-nuclei emulsion occur in $1p_{\Xi^-}$ nuclear states, suggesting attractive $V_{\Xi} \ge 20$ MeV. E. Friedman, A. Gal, PLB 820 (2021) 136555 J-PARC E07 $1s_{\Xi^-}$ assignments in ${}^{14}N$ are questioned. E. Friedman, A. Gal, PLB 837 (2023) 137640

$\Lambda \mathbf{NN vs.} \Lambda \mathbf{N content of V}_{\Lambda}^{opt}$ from Λ hypernuclei

Update: Millener, Dover, Gal PRC 38, 2700 (1988)

Woods-Saxon V = 30.05 MeV, r = 1.165 fm, a = 0.6 fm

 B_{Λ} values in ${}^{7}_{\Lambda}Li$ to ${}^{208}_{\Lambda}Pb$ from experiment and as calculated from a 3-parameter WS potential, suggesting a Λ -nucleus potential depth $D_{\Lambda} \approx -30$ MeV. Data: Table IV Gal-Hungerford-Millener, RMP 88 (2016) 035004.

\mathbf{D}_{Λ} in $\Lambda \mathbf{N}$ - $\Sigma \mathbf{N}$ models

Most 2-body YN models overbind: $|D_{\Lambda}^{(2)}| > 30$ MeV.

- NSC and ESC models overbind, with $D_{\Lambda}^{(2)} \sim -40$ MeV.
- $\chi EFT(LO)$ overbinds, substantial cutoff dependence.
- $\chi \text{EFT}(\text{NLO})$: substantial model & cutoff dependence. NLO13 underbinds, but does best for repulsive $\mathbf{D}_{\Sigma}^{(2)}$.
- $\chi \text{EFT}(\text{N}^2\text{LO})$ overbinds, $\mathbf{D}^{(2)}_{\Lambda} \approx -(\mathbf{33}\pm\mathbf{3})$ MeV.

Underbinding would be disastrous for neutron-star matter considerations, implying attractive ΛNN contribution $D_{\Lambda}^{(3)}$ which will soften the EoS at sufficiently large density. If repulsive, how large $D_{\Lambda}^{(3)}$ is?

Hyperon puzzle: AFDMC calculations

- ΛN overbinds; added ΛNN stiffens neutron-star EoS.
- However, problematic ${}_{\Lambda}^{5}$ He & unlisted ${}_{\Lambda}^{17}$ O B_{Λ} input.
- Produced nuclear radii are $\approx 20\%$ too small.

Critique of Skyrme-Hartree-Fock (SHF)

Millener-Dover-Gal, PRC 38 (1988) 2700 Schulze-Hiyama, PRC 90 (2014) 047301

	(2)	- (2)	0 -
$V_{\Lambda}(\rho_N) = [V$	$V_{\Lambda}^{(2)}(\rho_N) = a_0 \rho_N] +$	$-\left[V_{\Lambda}^{(3)}(\rho_N)=\right]$	$a_3 ho_N^2]$

is fitted to some $B_{\Lambda}(A)$ data points $[\rho_0=0.17 \text{ fm}^{-1}]$

Ref.	Points	$V_{\Lambda}^{(2)}(ho_0)$	$V_{\Lambda}^{(3)}(ho_0)$	$V_{\Lambda}(ho_0)$ (MeV)
MDG88	3	-57.8	31.4	-26.4
$\mathbf{SH14}$	35	-55.4	20.4	-35.0^{\dagger}
present (Q)	2	-57.6	30.2	-27.4

 $^{\dagger} \approx -31 \,\, {
m MeV}$ adding ${
m M}_{
m eff}(\Lambda)$ contribution.

- Introduce (WRW) Pauli correlations at $\rho^{4/3}$, affecting higher density powers, e.g., ρ^2 .
- WRW: Waas-Rho-Weise, NPA 617 (1997) 449, practised since 2013 in K^- atoms analyses.

WRW density dependence of \mathbf{V}_{Λ}

$$\Lambda N \Rightarrow V_{\Lambda}^{(2)}(\rho) = -\frac{4\pi}{2\mu_{\Lambda}} b_0^{\text{lab}}(\rho) \rho$$
$$b_0^{\text{lab}}(\rho) = \frac{b_0^{\text{lab}}}{1 + \frac{3k_F}{2\pi} b_0^{\text{lab}}} \qquad b_0^{\text{lab}} = (1 + \frac{A - 1}{A} \frac{\mu_{\Lambda}}{m_N})$$

for Pauli correlations, with $k_F = (3\pi^2 \rho/2)^{1/3}$. Short-range correlations negligible at $\rho \leq \rho_0$. Pauli affects terms beyond $\rho^{4/3}$, e.g., ρ^2 . Low density limit: $b_0 = \Lambda N$ scattering length.

$$\Lambda NN \quad \Rightarrow \quad V_{\Lambda}^{(3)}(\rho) = + \frac{4\pi}{2\mu_{\Lambda}} B_{0}^{\text{lab}} \frac{\rho^{2}}{\rho_{0}}$$

Applying Pauli to $V_{\Lambda}^{(3)}(\rho)$ has a minor effect. Fit b_0 and B_0^{lab} to $\mathbf{B}_{\Lambda}^{1s,1p}({}^{16}_{\Lambda}\mathbf{N})$.

 $egin{array}{lll} \mathbf{B}^{1s,1p}_{\Lambda}(\mathbf{A}) ext{ in Models P,Q} ext{ fitted to } {}^{16}_{\Lambda}\mathbf{N}. ext{ No Pauli} \ \mathbf{Model P: b_0 \neq 0, B_0 = 0} & \mathbf{Model Q: b_0 \neq 0, B_0 \neq 0} \ \mathbf{Model Q results close to SHF results} \end{array}$

 ${
m B}^{1s,1p}_{\Lambda}({
m A})$ in Models X,Y fitted to ${}^{16}_{\Lambda}{
m N}$. Pauli added to ${
m b}_0 \neq 0$ & ${
m B}_0 \neq 0$. In Model Y, neutron excess is decoupled from sym. nucl. matter: $ho^2 = (
ho_{
m sym} +
ho_{
m exc})^2 \rightarrow (
ho_{
m sym}^2 +
ho_{
m exc}^2)$.

$\Lambda \mathbf{N}$ & $\Lambda \mathbf{NN}$ contributions to \mathbf{D}_{Λ}

Model	Pauli	$\mathbf{D}^{(2)}_{\Lambda}$	$\mathbf{D}^{(3)}_{\Lambda}$	${f D}_{\Lambda}~({ m MeV})$
Р	No	-34.1	—	-34.1
Р'	Yes	-31.3	—	-31.3
MDG88	No	-57.8	31.4	-26.4
\mathbf{Q}	No	-57.6	30.2	-27.4
\mathbf{X}, \mathbf{Y}	Yes	-39.9	13.9	-26.0

- Final depth values, including uncertainties: $D_{\Lambda}^{(2)} = -40.4 \pm 0.6 \text{ MeV}, D_{\Lambda}^{(3)} = 13.9 \pm 1.4 \text{ MeV}$ $D_{\Lambda} = -26.5 \pm 1.5 \text{ MeV}.$
- AFDMC depths: scale $\rho_0=0.17 \text{ fm}^{-3} \text{ by } r_N^{-3}$. $D_{\Lambda}^{(2)}=-78.9\pm1.2 \text{ MeV}, D_{\Lambda}^{(3)}=53.0\pm5.3 \text{ MeV}$ $D_{\Lambda}=-26.5\pm1.5 \text{ MeV}.$

ΛNN summary & outlook

- $\mathbf{V}_{\Lambda}^{\text{opt}}$ applied to Λ single-particle states across the periodic table.
- Pauli corrected ΛN term, plus ΛNN term.
- Implicit isospin dependence in ΛNN term: neutron-excess density decoupled from symmetric nuclear-matter density.
- Final depth values, including uncertainties: $D_{\Lambda}^{(2)} = -40.4 \pm 0.6 \text{ MeV}$ with $b_0 \approx 1.7 \text{ fm}$, $D_{\Lambda}^{(3)} = 13.9 \pm 1.4 \text{ MeV}$, $D_{\Lambda} = -26.5 \pm 1.5 \text{ MeV}$.
- $\mathbf{D}_{\Lambda}^{(3)} \approx 14$ MeV excludes in EFT Λ hyperons from dense neutron-star matter, $\mu_{\Lambda} > \mu_n$, see Gerstung-Kaiser-Weise, EPJA 56 (2020) 175.

W. Weise, EPJ Web Conf. 271 (2022) 06003 Following Gerstung-Kaiser-Weise, EPJA 56 (2020) 175

Ξ^- nuclear physics

from counter experiments,

from theory and femtoscopy,

& from capture in emulsion nuclei

 $^{12}C(K^-,K^+)$ counter experiments, end of 1990s. Unresolved bound states, if any, V_{Ξ} of order 15 MeV

BNL AGS-906 on ⁹Be. A QF calculation by Harada & Hirabayashi, PRC 103 (2021) 024605 concludes V_{Ξ} =17±6 MeV. Yet, no Ξ^- bound-state smoking gun from (K⁻, K⁺) experiments. Await J-PARC final E05 & future E70 results.

ΞN s-wave model interactions

HAL-QCD: LQCD calculation at $m_{\pi(K)}=146(525)$ MeV Sasaki et al. NPA 998 (2020) 121737

Inoue et al. AIPCP 2130 (2019) 020002: $V_{\Xi}^{LQCD} = 4 \pm 2 \text{ MeV}$

Kohno, PRC 100 (2019) 024313: $V_{\Xi}^{\text{EFT}} \approx 10 \text{ MeV}$

Femtoscopy study of p- Ξ^- correlations ALICE, PRL 123 (2019) 112002

attractive HAL-QCD – yes repulsive Nijmegen ESC16 – no

Two-body Ξ^- capture emulsion events

Experiment	Event	^{A}Z	$^{A'}_{\Lambda} \mathbf{Z'} + ^{A''}_{\Lambda} \mathbf{Z''}$	$B_{\Xi^{-}}$ (MeV)
KEK E176	10-09-06	$^{12}\mathbf{C}$	${}^4_\Lambda {f H} + {}^9_\Lambda {f Be}$	$0.82{\pm}0.17$
KEK E176	13-11-14	$^{12}\mathbf{C}$	${}^4_\Lambda \mathbf{H} + {}^9_\Lambda \mathbf{Be}^*$	$0.82{\pm}0.14$
KEK E176	14-03-35	$^{14}\mathbf{N}$	$^3_\Lambda \mathbf{H} + ^{12}_\Lambda \mathbf{B}$	$1.18{\pm}0.22$
KEK E373	KISO	$^{14}\mathbf{N}$	$^{5}_{\Lambda}\mathrm{He}+^{10}_{~\Lambda}\mathrm{Be}^{*}$	$1.03{\pm}0.18$
J-PARC E07	IBUKI	$^{14}\mathbf{N}$	$^{5}_{\Lambda}\mathrm{He}+^{10}_{~\Lambda}\mathrm{Be}$	$1.27{\pm}0.21$

- Ξ^- capture occurs mostly from 3D atomic state ($B_{\Xi^-} = 126, 175 \text{ keV in } {}^{12}\text{C}, {}^{14}\text{N}$, respectively).
- To form $1s_{\Lambda}^2$ in $\Xi^- p \to \Lambda\Lambda$ need $l_{\Xi^-} = l_p$, hence expect capture from a Coulomb-assisted $1p_{\Xi^-}$ nuclear state bound by ~1 MeV, evolving by Strong Interaction from a 2P atomic state.

Pauli corrected: 21.9 \pm 0.7 MeV. It fails in ¹⁴N: $B_{1p}^{\Xi^-}(calc.)=1.96\pm0.25$ vs. $B_{1p}^{\Xi^-}(exp.)=1.15\pm0.20$ MeV

 $egin{array}{lll} {f F}_{\Xi N}^{(2)} {f Q}_N \cdot {f Q}_\Xi & {f Q} = \sqrt{rac{4\pi}{5}} {f Y}_2(\hat{r}) \ {f F}_{\Xi N}^{(2)} = -3 \ {
m MeV} \Rightarrow {f B}_{1p}^{\Xi^-}(0^-) = 1.12 \pm 0.25 \ {
m MeV} \ {f agrees with} \ {f B}_{1p}^{\Xi^-}(\exp.) = 1.15 \pm 0.20 \ {
m MeV} \end{array}$

J-PARC E07 ¹⁴N events

Twin Λ : capture & decay vertices

**** IBUKI (J-PARC E07) PRL 126 (2021) 062501

- A: capture $\Xi_{1p}^- + {}^{14}\mathbf{N} \to {}^{5}_{\Lambda}\mathbf{He} + {}^{10}_{\Lambda}\mathbf{Be}$
- B: decay ${}_{\Lambda}^{5}\text{He} \rightarrow {}^{4}\text{He} + p + \pi^{-}$
- C: decay ${}^{10}_{\Lambda}\mathrm{Be} \rightarrow 3 \text{ or } 4 \text{ nuclei} + \text{neutrons}$

** KINKA (KEK E373) PTEP 2021 073D02

- A: capture $\Xi_{1s}^- + {}^{14}\mathbf{N} \rightarrow {}^9_{\Lambda}\mathbf{Be} + {}^5_{\Lambda}\mathbf{He} + \mathbf{n}$
- B: decay ${}^9_{\Lambda}\text{Be} \rightarrow {}^6\text{He} + 2p + n$
- C: decay ${}_{\Lambda}^{5}\text{He} \rightarrow 2$ nuclei + neutrons Furthermore, $\mathbf{1s}_{\Xi^{-}}$ capture rate is only a few % of $\mathbf{1p}_{\Xi^{-}}$ capture rate

$1s_{\Xi^-}$ reinterpreted as $1p_{\Xi^0}$

Remarks on SHF Calculations Guo-Zhou-Schulze, PRC 104 (2021) L061307 Suppressing SHF nonlocal terms and assuming $m_{\Xi}^* = m_{\Xi}$, the SHF Ξ mean field depth $V_{\Xi}(\rho_0)$ in n.m. density ρ_0 =0.17 fm⁻¹ is fixed by fitting $V_{\Xi}(\rho_N) = [V_{\Xi}^{(2)}(\rho_N) = a_0\rho_N] + [V_{\Xi}^{(3)}(\rho_N) = a_3\rho_N^2]$ in ¹⁴N to $B_{\Xi^-}(1s) \approx 8.00$ MeV (KINKA) and $B_{\Xi}(1p) \approx 1.15$ MeV (KISO & IBUKI).

Method	Pauli	$V^{(2)}_{\Xi}(\rho_0)$	$V_{\Xi}^{(3)}(\rho_0)$	$V_{\Xi}(ho_0)$ (MeV)
SHF	No	34.1	-20.4	13.7
$\mathbf{V}_{\mathrm{opt}}$	No	27.5	-12.6	14.9
$\mathbf{V}_{\mathrm{opt}}$	Yes	24.6	-11.0	13.6

Ξ^- capture: Summary & Outlook

- $V_{\Xi}(\rho_0)=24.3\pm0.8 \Rightarrow 21.9\pm0.7$ MeV with Pauli, from twin- Λ two-body Ξ_{1p}^- -¹²C capture events.
- KEK-E224 & BNL-E885: $V_{\Xi}(\rho_0) \approx 16 \pm 2 \text{ MeV}$.
- BNL-E906: $V_{\Xi}(\rho_0) = 17 \pm 6 \text{ MeV} (QF \text{ in } {}^9\text{Be}).$
- EFT & LQCD suggest $V_{\Xi}(\rho_0) \leq 10$ MeV.
- SHF using E07 ¹⁴N input: V_Ξ≈14±1 MeV, with attractive ΞN & repulsive ΞNN terms.
- Why all E07 Ξ_{1s}^- -assigned events are in ¹⁴N? A Ξ_{1p}^0 -¹⁴C assignment is more natural.
- Challenge: find one good Ξ_{1s}^- -¹²C capture event.

Thanks for your attention!