2023.2.14 EMMI workshop in Bologna

Recent results and prospects in hypernuclear physics (mainly at J-PARC)

Tohoku University Japan Atomic Energy Agency H. Tamura

Contents

1. Introduction – Present status at J-PARC

2. Few-body (A=3,4) A hypernuclei

3. Double strange ($\Xi / \Lambda \Lambda$) hypernuclei

4. **E**-atomic X-rays5. Summary

1. Introduction

Present status at J-PARC

J-PARC Hadron Hall

Present status of nuclear/hadron experiments

2. Few-body (A=3,4) Λ hypernuclei

Features of few-body hypernuclei

- Precise few-body calculations possible
- **Experimentally clear due to simple level structure**
- Quite sensitive to YN interaction
 - **3**_{Λ}H puzzle : τB_{Λ} relationship
 - Charge Symmetry Breaking puzzle $({}^{4}_{\Lambda}H/{}^{4}_{\Lambda}He)$
 - Large effects of spin-isospin dependence of YN interaction
 - Large effects of $\Lambda N-\Sigma N$ coupling

Compilation on hypertriton (ALICE arXiv:2209.07360)

Direct timing measurement at J-PARC

Analysis of emulsion at J-PARC

Hypertriton: New data after 2018 and prospects

Experiment	Reaction	Method	τ (³ _Λ Η)	τ (⁴ _Λ Η)	$B_{\Lambda}({}^{3}{}_{\Lambda}H)$
STAR	HI (Au+Au) √s=3GeV	decay length inv. mass	142+24-21±29 221±15±19	218±6±13	0.41±0.12±0.11 under analysis
ALICE	HI (Pb+Pb) √s=5TeV	decay length inv. mass	242+34-38±17 253±11±6	preliminary	0.072±0.063 ±0.036
HADES	HI (Ag+Ag) √s=2.55GeV	decay length	256±22±36 (preliminary)	222±8±13 (preliminary)	
WASA-FRS	HI (⁶ Li+ ¹² C) 2GeVA	decay length	under analysis	under analysis	under analysis
J-PARC E73	^{3,4} He(K⁻,π⁰)	decay time	test data taken run in 2023	190土8土?? to be published	-
ΜΑΜΙ	⁷ Li(e,K+)	decay pion momentum	-	-	under analysis $\Delta M^{\sim} \pm 0.02$
J-PARC E07	K ⁻ on emulsion	decay time decay energy	under analysis	later	under analysis
JLab E12-19-002	³ He(e,e'K⁺)	missing mass	-	-	approved
ELPH	^{3,4} He(γ, K ⁺)	decay time	proposed	partly approved	

<u>Charge Symmetry Breaking in A=4 Λ hypernuclei</u>

Precise data are necessary to be compared with few-body calculations

⁴_ΛH γ-ray will be precisely measured with Ge detector array via ⁷Li(K⁻, π^{-}) ⁷_ΛLi^{*}, ⁷_ΛLi^{*} \rightarrow ⁴_ΛH^{*} + X

Level scheme of A=3 A hypernuclei

3. Double strange ($\Xi / \Lambda \Lambda$) hypernuclei

List of detected events in E07 (Jun., 2022)

Nakazawa, HYP2022

<u>Unambiguous determination of B_{Ξ} of Ξ hypernucleus</u>

 $\Xi^{-} + {}^{14}N \rightarrow {}^{15}_{\Xi}C \rightarrow {}^{10}_{\Lambda}Be + {}^{5}_{\Lambda}He$

K. Nakazawa et al. PTEP 2015, 033D02 (2015) Kiso event (KEK E373)

S. H. Hayakawa, PRL 126, 062501 (2021)

Unambiguous determination of \underline{B}_{Ξ}

Observation of *s***-state \Xi hypernucleus** ?

 $\Xi N \rightarrow \Lambda \Lambda$ in Nijmegen/ HAL QCD => Ξ absorption mainly at 3D / 2P orbits Observation of s states => extremely weak $\Xi N \rightarrow \Lambda \Lambda$ interaction?

Theories seem to agree with the data, but they used the BNL suggestion of $U_{\pm} \sim -15$ MeV.

Why *E* survives until it cascades down to the 0s orbit ??

=> Gal's talk

<u>ΛΛ hypernuclei (J-PARC E07)</u>

 $\Delta B_{\Lambda\Lambda} = 0.67 \pm 0.17 \text{ MeV}$

H. Takahashi et al., PRL 87 (2001) 212502

$=> \Lambda - \Lambda$ is weakly attractive

H. Ekawa et al., PTEP 2019 (2019) 021D02

Weakly attractive Λ - Λ force is confirmed.

But consistency with Nagara should be studied. Different effect of $\Lambda\Lambda$ - Ξ N coupling A-dependence of 0s_{Λ} wave function

4. Ξ-atomic X-rays

Ξ^- atomic X-rays at J-PARC

Atomic X rays (shifts and widths) give clear quantitative info. on the Ξ -nuclear potential

E-Ag/Br atomic X rays in emulsion (J-PARC E07)

"Reaction-Xray-Emulsion" triple-coincidence hybrid method

Ξ absorption events selected via emulsion image analysis

- BG level reduced to 1/170
- Calibration method of <0.1 keV developed

X-ray peaks not observed due to lower emulsion and Ge detector efficiencies than expected

Ξ^- Fe atomic X-ray (J-PARC E03-1st)

Y. Ishikawa, HYP2022, 2022.6

Spectroscopy of Ξ hypernuclei via (K⁻,K⁺) reaction

E70 (Nagae) : ${}^{12}C(K^-,K^+){}^{12}{}_{\Xi}Be$ E75 (Fujioka) : ${}^{7}Li(K^-,K^+){}^{7}{}_{\Xi}H, {}^{7}{}_{\Xi}H ->{}^{5}{}_{\Lambda\Lambda}H$

A new dedicated spectrometer, S-2S has been installed. Run from 2023.

E stop tagging with AFT for E atomic X-rays (E96)

x [mm]

T.O. Yamamoto et al., EPJ Web Conf. 271, 03001 (2022)

Summary

- ³ A puzzle: new ALICE results appeared. Measurements with other methods still necessary.
 - J-PARC E73: ${}^{4}_{\Lambda}$ H lifetime measured, run for ${}^{3}_{\Lambda}$ H this year.
- ⁴_ΛH/³_ΛH γ-ray measurement is planned.
 - New ${}^{15}_{\Xi}$ C hypernuclear events observed. Some have a large B_{Ξ} value, suggesting an s_{Ξ} state?
 - Ξ atomic X-ray measurement tried twice, but not observed yet. ¹²C(K⁻,K⁺) ¹²_{Ξ}Be spectroscopy will start soon, together with a Ξ -C
 - atomic X-ray measurement.