Recent results and future prospects of the JLab hypernuclear program

Contents

- (e,e'K⁺) reaction spectroscopy
- past and recent results
- Search for nnΛ
- Future three experiments

The University of Tokyo Sho Nagao

2023/02/14

Hypernuclear Spectroscopy

- > Deduced A potential in nuclear matter from A-dependence of A binding energies in hypernuclei
- \succ Hypernuclear spectroscopies played an important rule to measure B_{Λ}
- NS is good bench mark to confirm our framework
- Resolving Hyperon-Puzzle is one of the important motivation

ANN 3-body force may make hard-core of NS

- > ANN 3-body repulsive force plays important rule to reproduce 2 ⊙ NS.
- ANN 3-body force would appear on E_A shifts of hypernuclei

ANN 3-body force may make hard-core of NS

(e,e'K⁺) reaction spectroscopy

- Hypernuclear production with primary electron beam via virtual photon
- High-intensity electron beam provides enough yield even for thin fixed target
- Good energy resolution thanks to low-emittance beam and high-resolution spectrometers
- Well known energy calibration sources could be used

(e,e'K⁺) reaction spectroscopy past and present

(e,e'K⁺) reaction spectroscopy past and present

Search for $nn\Lambda$

Prog. Theor. Exp. Phys. **2022** 013D01(19 pages) DOI: 10.1093/ptep/ptab158

The cross-section measurement for the ${}^{3}\text{H}(e, e'K^{+})nn\Lambda$ reaction

PHYSICAL REVIEW C 105, L051001 (2022)

Letter

Spectroscopic study of a possible Λnn resonance and a pair of ΣNN states using the $(e, e'K^+)$ reaction with a tritium target

A=3 hypernuclei

- ➢ nn∧ is a T=1, A=3 hypernucleus
- Existence of nnA is not robust yet
- ➢ Possibility of bound/resonance nn∧ if ³∧H would bound deeply.

Experiment w/ cryogenic gas T₂ and High-resolution Spectrometers

2023/02/14 4th EMMI workshop

Experiment w/ cryogenic gas T₂ and High-resolution Spectrometers

Event Selection

- K⁺ is identified on coincidence time of two spectrometers
- ➤ K⁺ selection with two aerogel-Cherenkov detectors
- ➢ Any PID are not necessary for e[−]' side

- Reaction points at the target could be measured with < 1 cm resolution on vertex information reconstructed with transfer matrix
- Cryo-gas region and Al-window could be find clearly

Energy Calibration with H₂ target

- > Mass calibration with $p(e,e'K^+)\Lambda/\Sigma^0$
- ➤ Λ Mass resolution is 1.4 MeV (rms)
- Systematic error of peak centroid would be 0.4 MeV

- Measurement of very forward angle with low Q² region
- Λ/Σ⁰ reaction cross-section at this new kinematical position will be reported.

Missing Mass of T₂ target

Remarks

- > Expected resolution $\sigma = 1.3$ MeV, $\delta E = 0.4$ MeV
- No robust peak (2.7σ)
- ➢ Upper-limits 21 nb sr⁻¹ (90% C.L.)

Future Projects

Three experiments are already approved

E12-19-002 Spectroscopy of ${}^{3,4}_{\Lambda}H$

E12-15-008 Spectroscopy of hypernuclear isotopes ^{40, 48} K

E12-20-013 Spectroscopy of ²⁰⁸ _ATi

${}^{3}_{\Lambda}H, {}^{4}_{\Lambda}H(1^{+})$ spectroscopies

Hypernuclei database (https://hypernuclei.kph.uni-mainz.de/)

- > Precision measurement of ${}^{3}_{\Lambda}H$, ${}^{4}_{\Lambda}H(1^{+})$ from ${}^{3}He$ and ${}^{4}He$ cryo-gas target
- Spectroscopy of ³_AH will be an independent measurement and resolve a part of hypertriton puzzle
- Measurement of ⁴_AH(1⁺) will be a new data of charge-symmetry-breaking on A=4 hypernuclear system

Spectroscopy of $_{\Lambda}K$ isotopes

- Isospin dependence for medium-heavy hypernuclei is really interesting
- ightarrow B_{Λ} shift is expected in the quantum MC assuming isospin dependence Λ NN force, while there are no experimental data
- > Measurement is important understanding AN & ANN interaction nuclear medium

Spectroscopy of heavy hypernucleus

- > Current heavy hypernuclear data of (π^+ ,K⁺) reaction does not have enough resolution and accuracy
- ➢ Measurement by (e,e'K⁺) reaction would identify peaks rather clearly
- Experimentally challenging due to higher rate of bremsstrahlung background

Overview of new experiments

- Two existing high-resolution short arm spectrometer together with new separation magnets
- high-yield and lower-background
- Single rate in spectrometer would be reduced by a factor of a few tens.
- ightarrow B_A measurement of ~10 keV precision
- Experiments will be from 2025~

Summary

- Hypernuclear missing-mass spectroscopy have provided information about AN interaction nuclear medium
- > (e,e'K⁺) reaction spectroscopy has good characteristics measuring B_∧ (High-resolution, High-accuracy)
- ³H(e,e'K⁺)X experiment has been performed at JLab Hall-A No robust peaks
- > New three experiments are already approval
 - Spectroscopy of ^{3,4} _AH
 - Spectroscopy of hypernuclear isotopes ^{40, 48} K
 - Spectroscopy of ${}^{208}\Lambda$ Ti