Hypernuclear studies with the WASA-FRS experiment and nuclear emulsions + machine learning

Take R. Saito for the WASA-FRS collaboration, the Super-FRS Experiment Collaboration, and Emulsion-ML collaboration

High Energy Nuclear Physics Laboratory, Cluster for Pioneering Research, **RIKEN**, Japan HRS-HYS Research Group (High ReSolution - HYpernuclear Spectroscopy),

FRS/NUSTAR department,

GSI Helmholtz Center for Heavy Ion Research,

Germany

EMMI Workshop "4th Workshop on Anti-Matter, Hyper-Matter and Exotica Production at the LHC", 13-17 February 2023 Department of Physics and Astronomy "A. Righi", University of Bologna, Italy

Recent hot topics for few-body hypernuclei

On hypertriton

On Λnn

HypHI., PRC 88 (2013) 041001

Talk by Sho Nagao

FIG. 5. The enlarged mass spectrum around the Λnn threshold. Two additional Gaussians were fitted together with the known contributions (the accidentals, the Λ quasifree, the free Λ , and the ³He contamination). The one at the threshold is for the small peak, while the broad one is for the additional strength above the predicted quasifree distribution.

JLab E12-17-003., PRC 105 (2022) L051001

Recent hot topics for few-body hypernuclei

On hypertriton

Our approaches:

Lifetime and Λ nn: with heavy ion beams at FRS-GSI Binding energy: with nuclear emulsion and machine learning

On Λnn

Talk by Sho Nagao

FIG. 5. The enlarged mass spectrum around the Λnn threshold. Two additional Gaussians were fitted together with the known contributions (the accidentals, the Λ quasifree, the free Λ , and the ³He contamination). The one at the threshold is for the small peak, while the broad one is for the additional strength above the predicted quasifree distribution.

Our challenges on the hypertriton lifetime and Λnn

The HypHI Phase 0 at GSI (2006-2012)

PRODUCTION TARGET

SIS

S2

FRS

\$3

S4

ESR

With ⁶Li+¹²C at 2 A GeV

March 2019: WASA moved from Juelich to GSI

The WASA-FRS HypHI experiment at GSI

The WASA-FRS collaboration

T.R. Saito^{a,b,c,1}, P. Achenbach^{d,e}, H. Alibrahim Alfaki^b, F. Amjad^b, M. Armstrong^{b,f}, K.-H. Behr^b, J. Benlliure^g, Z. Brencic^{h,i}, T. Dickel^{b,j}, V. Drozd^{b,k}, S. Dubey^b, H. Ekawa^a, S. Escrig^{L,a}, M. Feijoo-Fontán^g, H. Fujioka^m, Y. Gao^{a,n,o}, H. Geissel^{b,j}, F. Goldenbaum^p, A. Graña González^g, E. Haettner^b, M.N. Harakeh^k, Y. He^{a,c}, H. Heggen^b, C. Hornung^b, N. Hubbard^{b,q}, K. Itahashi^{r,s,2}, M. Iwasaki^{r,s}, N. Kalantar-Nayestanaki^k, A. Kasagi^{a,t}, M. Kavatsyuk^k, E. Kazantseva^b, A. Khreptak^{u,v}, B. Kindler^b, R. Knoebel^b, H. Kollmus^b, D. Kostyleva^b, S. Kraft-Bermuth^w, N. Kurz^b, E. Liu^{a,n,o}, B. Lommel^b, V. Metag^j, S. Minami^b, D.J. Morrissey^x, P. Moskal^{v,y}, I. Mukha^b, A. Muneem^{a,z}, M. Nakagawa^a, K. Nakazawa^t, C. Nociforo^b, H.J. Ong^{n,aa,ab}, S. Pietri^b, J. Pochodzalla^{d,e}, S. Purushothaman^b, C. Rappold¹, E. Rocco^b, J.L. Rodríguez-Sánchez^g, P. Roy^b, R. Ruber^{ac}, S. Schadmand^b, C. Scheidenberger^{b,j}, P. Schwarz^b, R. Sekiya^{ad,r,s}, V. Serdyuk^p, M. Skurzok^{v,y}, B. Streicher^b, K. Suzuki^{b,ae}, B. Szczepanczyk^b, Y.K. Tanaka^{a,3}, X. Tangⁿ, N. Tortorelli^b, M. Vencelj^h, H. Wang^a, T. Weber^b, H. Weick^b, M. Will^b, K. Wimmer^b, A. Yamamoto^{af}, A. Yanai^{ag,a}, J. Yoshida^{a,ah}, J. Zhao^{b,ai}, (WASA-FRS/Super-FRS Experiment Collaboration)

^a High Energy Nuclear Physics Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 351-0198 Wako, Saitama, Japan, ^bGSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, ^cSchool of Nuclear Science and Technology, Lanzhou University, 730000 Lanzhou, China, ^dInstitute for Nuclear Physics, Johannes Gutenberg University, 55099 Mainz, Germany, ^eHelmholtz Institute Mainz, Johannes Gutenberg University, 55099 Mainz, Germany, ^fInstitut für Kernphysik, Universität Köln, 50923 Köln, Germany, ^gUniversidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain, ^h Jozef Stefan Institute, 1000 Ljubljana, Slovenia, ⁱUniversity of Ljubljana, 1000 Ljubljana, Slovenia, ^jUniversität Gießen, 35392 Gießen, Germany, ^kUniversity of Groningen, 9747 AA Groningen, The Netherlands, ¹Instituto de Estructura de la Materia - CSIC, 28006 Madrid, Spain, ^mTokyo Institute of Technology, 152-8550 Tokyo, Japan, ⁿInstitute of Modern Physics, Chinese Academy of Sciences, 730000 Lanzhou, China, ^oSchool of Nuclear Science and Technology, University of Chinese Academy of Sciences, 100049 Beijing, China, ^pInstitut für Kernphysik, Forschungszentrum Jülich, 52425 Jülich, Germany, ^qInstitut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany, ^rMeson Science Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, 351-0198 Wako, Saitama, Japan, ^sNishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, 351-0198 Wako, Saitama, Japan, ^tGraduate School of Engineering, Gifu University, 501-1193 Gifu, Japan, "INFN, Laboratori Nazionali di Frascati, Frascati, 00044 Roma, Italy, ^vInstitute of Physics, Jagiellonian University, 30-348 Kraków, Poland, ^wTH Mittelhessen University of Applied Sciences, 35390 Gießen, Germany, ^xNational Superconducting Cyclotron Laboratory, Michigan State University, MI 48824 East Lansing, USA, ^yCenter for Theranostics, Jagiellonian University, 30-348 Krakow, Poland, ² Faculty of Engineering Sciences, Ghulam Ishaa Khan Institute of Engineering Sciences and Technology, 23640 Topi, Pakistan, ^{aa} Joint Department for Nuclear Physics, Lanzhou University and Institute of Modern Physics, Chinese Academy of Sciences, 730000 Lanzhou, China, ^{ab}Research Center for Nuclear Physics, Osaka University, 567-0047 Osaka, Japan, ac Uppsala University, 75220 Uppsala, Sweden, ad Kyoto University, 606-8502 Kyoto, Japan, ^{ae}Ruhr-Universiät Bochum, Institut für Experimentalphysik I, 44780 Bochum, Germany, af KEK, 305-0801 Tsukuba, Ibaraki, Japan, ^{ag}Saitama University, Sakura-ku, 338-8570 Saitama, Japan, ah Tohoku University, 980-8578 Sendai, Japan, ^{ai}Peking University, 100871 Beijing, China,

Author list of the EMIS2022 proceedings

Part of the WASA-FRS collaboration

The entire setup of WASA at FRS

Photos by Jan Hosan and GSI/FAIR

WASA-FRS and its perspective in Nature Reviews Physics

nature reviews physics

Explore content V About the journal V Publish with us V

nature > nature reviews physics > perspectives > article

Perspective Published: 14 September 2021

New directions in hypernuclear physics

Takehiko R. Saito ⊠, Wenbou Dou, Vasyl Drozd, Hiroyuki Ekawa, Samuel Escrig, Yan He, Nasser Kalantar-Nayestanaki, Ayumi Kasagi, Myroslav Kavatsyuk, Enqiang Liu, Yue Ma, Shizu Minami, Abdul Muneem, Manami Nakagawa, Kazuma Nakazawa, Christophe Rappold, Nami Saito, Christoph Scheidenberger, Masato Taki, Yoshiki K. Tanaka, Junya Yoshida, Masahiro Yoshimoto, He Wang & Xiaohong Zhou

Nature Reviews Physics (2021) | Cite this article

Takehiko R. Saito et al., Nature Reviews Physics, 803-813 (2021)

Fig. 1 | **The WASA-FRS hypernuclear experiment. a** | Schematic drawing of the fragment separator (FRS) at GSI. The ⁶Li primary beams at 2 A GeV are delivered to the diamond target located at the mid-focal plane of the FRS, referred to as S2, to produce hypernuclei of interest. Residual nuclei of the π^{-} weak decays of hypernuclei are transported from S2 to S4 in the FRS, and measured precisely with a momentum-resolving power of 10⁻⁴. The π^{-} mesons produced by the hypernuclear decays are measured at S2 by the Wide Angle Shower Apparatus (WASA) central detector. **b** | The WASA central detector. Panel **b** is adapted with permission from REF.⁷⁶.

Data taking (January – March 2022)

Run	Period	Data size
Commissioning run	28th Jan 7th Feb.	7 TB
Physics run for η' nuclei	22nd Feb 28th Feb.	40 TB
Physics run for HypHI	10th Mar 19th Mar.	48 TB

92 % of the prop.

Acquired data for S447 (hypernuclei)

Beam	Fragment at S4	Amount	Time	Accepted trigger rate	
⁶ Li beam	³ He	3.3 × 10 ⁸	40.9 hours	2600 Hz	${}^{3}\Lambda H$
	⁴ He	0.9 × 10 ⁸	42.0 hours	1800 Hz	⁴ ∧H
	deuteron	1.8 × 10 ⁸	43.9 Hours		nn/
	proton (mid- rapidity)	5.3 × 10 ⁶	3.2 hours	680 Hz	Λ
¹² C beam	³ He	1.0 × 10 ⁸	12.5 hours	2400 Hz	${}^3\Lambda H$
	O ⁶	2.4 × 10 ⁵			⁹ ∧ B

Data analyses in progress

Momentum resolution: **Preliminary:** $\Delta p/p \sim 5 \times 10^{-4}$

Courtesy of Engiang Liu

Ph.D. theses: Vasyl Drozd, Yiming Gao, Enqiang Liu, Samuel Escrig Master thesis: Ayari Yanai

Data analyses in progress

Momentum resolution: **Preliminary:** $\Delta p/p \sim 5 \times 10^{-4}$

Courtesy of Engiang Liu

Courtesy of Hiroyuki Ekawa

Ph.D. theses: Vasyl Drozd, Yiming Gao, Enqiang Liu, Samuel Escrig Master thesis: Ayari Yanai

How about the hypertriton binding energy?

Nuclear Emulsion:

Charged particle tracker with <u>the best spatial resolution</u> (easy to be < 1 μm, 11 nm at best)

Silver halide crystal Diameter: 200 nm Charged particle Medium: gelatin Development Silver clusters

(Latent image)

Getting bigger

20µm

J-PARC accelerator facility

J-PARC E07 experiment

K⁻ Beam (180cm above the floor)

Emulsion module

Experimental apparatus 2016-2017 J-PARC, Ibaraki, Japan

N1 81 8

al at at at all the

J-PARC E07 experiment

K⁻ Beam (180cm above the floor)

Emulsion module

Experimental apparatus 2016-2017 J-PARC, Ibaraki, Japan

Results from J-PARC E07 (Hybrid method)

H. Ekawa et al., Prog. Theor. Exp. Phys. 2019, 021D02

Results from J-PARC E07 (Hybrid method)

H. Ekawa et al., Prog. Theor. Exp. Phys. 2019, 021D02

Data size:

- 10⁷ images per emulsion (100 T Byte)
 10¹⁰ images per 1000 emulsions (100 P Byte)
 Number of background tracks:
 Beam tracks: 10⁴/mm²
- •Nuclear fragmentations: 10³/mm²

Current equipments/techniques with visual inspections

560 years

100µm

Data size:

- 10⁷ images per emulsion (100 T Byte)
 10¹⁰ images per 1000 emulsions (100 P Byte)
 Number of background tracks:
 Beam tracks: 10⁴/mm²
- •Nuclear fragmentations: 10³/mm²

Current equipments/techniques with visual inspections

560 years

3 vears

Machine Learning

liced image

Millions of single-strangeness hypernuclei 1000 double strangeness hypernuclei (formerly only 5)

Setup for analyzing emulsions at the High Energy Nuclear Physics Laboratory in RIKEN

- Hypernuclear physics
- Neutron imaging

Challenges for Machine Learning Development MOST IMPORTANT: • Quantity and quality of training data

However,

No existing data for hypertriton with emulsions for training

Our approaches: Producing training data with

- Monte Carlo simulations
- Image transfer techniques

Monte Carlo simulations and GAN(Generative Adversarial Networks)

Ayumi Kasagi. Ph.D. thesis (2023)

Monte Carlo simulations and GAN(Generative Adversarial Networks)

Binarized tracks from MC simulations + background from the real data

Produced training data

GAN: pix2pix Edges to Photo

A.

input

output

Binarized (like for simulations)

Real emulsion image

Ayumi Kasagi. Ph.D. thesis (2023)

Monte Carlo simulations and GAN(Generative Adversarial Networks)

Monte Carlo simulations and GAN(Generative Adversarial Networks)

Detection of hypertriton events With Mask R-CNN model

K. He, et al., arXiv https://arxiv.org/ abs/1703.06870 (2017).

Detection of each object

At large object density

car 0.92

car 0.860 car 0.931

Detection of hypertriton events With Mask R-CNN model

K. He, et al., arXiv https://arxiv.org/ abs/1703.06870 (2017).

Example of training dataset

https://www.cis.upenn.edu/~jshi/ped_html/

Detection of each object

berson (

At large object density

car 0.92

car 0.860 car 0.931

Hypertriton search with Mask R-CNN

³He

Simulated image

50 µm

 $^{3}\Lambda H$

 π^{-}

50 µm

Hypertriton search with Mask R-CNN

Status of the project for hypertriton and ${}^4_{\Lambda}H$

Discovery of the first hypertriton event in E07 emulsions

nature reviews physics

Explore content 🗸 About the journal 🖌 Publish with us 🗸

nature > nature reviews physics > perspectives > article

Perspective | Published: 14 September 2021

New directions in hypernuclear physics

Takehiko R. Saito ⊠, Wenbou Dou, Vasyl Drozd, Hiroyuki Ekawa, Samuel Escrig, Yan He, Nasser Kalantar-Nayestanaki, Ayumi Kasagi, Myroslav Kavatsyuk, Enqiang Liu, Yue Ma, Shizu Minami, Abdul Muneem, Manami Nakagawa, Kazuma Nakazawa, Christophe Rappold, Nami Saito, Christoph Scheidenberger, Masato Taki, Yoshiki K. Tanaka, Junya Yoshida, Masahiro Yoshimoto, He Wang & Xiaohong Zhou

Nature Reviews Physics (2021) | Cite this article

TRS et al., Nature Reviews Physics, 803-813 (2021) Cover of December 2021 issue

Dependent 2011 millioner (m. 12. mennen auf einer andere geberen

nature reviews physics

Guaranteeing the determination of the hypertriton binding energy SOON Precision: 28 keV E. Liu et al., EPJ A57 (2021) 327

Ayumi Kasagi. Ph.D. thesis (2023)

Identification of hypertriton and ${}^{4}_{\Lambda}H$ by π^{-} track length

Ayumi Kasagi. Ph.D. thesis (2023)

Binding energy for ${}^4_{\Lambda}H$

- Mass with range of ⁴He
- Emulsion calibration (density and shrinkage) for each event
- Checking coplanarity and inner-product
- Only 0.4 % of the entire data

Binding energy for ${}^4_{\Lambda}H$

- Mass with range of ⁴He
- Emulsion calibration (density and shrinkage) for each event
- Checking coplanarity and inner-product
- Only 0.4 % of the entire data

Ayumi Kasagi. Ph.D. thesis (2023)

Byproduct 1:

Discovery of double-A hypernucleus as a biproduct of ${}^3{}_{\Lambda} H$ search

Byproduct 2:

Byproduct 2:

Byproduct 2:

Hypernuclear scattering

Current machine learning developments

Improvements for the hypertriton binding energy

- Automated pion tracking
- Automated emulsion calibration

Detection of three- and multi-body single- Λ hypernuclear decay (from May 2022)

Three-body decay event

0.9422

Courtesy of Shohei Sugimoto and Manami Nakagawa

Shohei Sugimoto, Master thesis

Three-body decay event

Current machine learning developments

Improvements for the hypertriton binding energy

- Automated pion tracking
- Automated emulsion calibration

Detection of three- and multi-body single- Λ hypernuclear decay (from May 2022)

Search for double-strangeness hypernuclei (from June 2022)

Ξ− capture:
#1: penetrate
#2: stop
#3: stop
#4: decay

third vertex:
#7: measurement ongoing
#8: stop
#9: stop

Courtesy of Yan He and Manami Nakagawa

Only \sim 0.03 % of the entire data analyzed

Yan He, Ph.D. thesis

MOD100_PL02_AREA10

Beam_int: #1: decay

second vertex:
#2: decay
#3: stop
#4: stop

third vertex: #5: stop #6: stop #7: stop

Courtesy of Yan He and Manami Nakagawa

Only \sim 0.03 % of the entire data analyzed

Yan He, Ph.D. thesis

Yan He, Ph.D. thesis

Nuclear Emulsion + Machine Learning Collaboration

High Energy Nuclear Physics Laboratory, RIKEN, Japan

Michi Ando, Wenbo Dou, Hiroyuki Ekawa, Yiming Gao, Chiho Harisaki, Yan He, Risa Kobayashi, Hanako Kubota, Enqiang Liu, Manami Nakagawa, Nami Saito, Takehiko R. Saito, Shohei Sugimoto, Yoshiki Tanaka, Junya Yoshida, Masahiro Yoshimoto, He Wang

- Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Científicas (CSIC), Spain Christophe Rappold
- Department of Engineering, Gifu University Ayumi Kasagi, Kazuma Nakazawa
- Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Pakistan
 Abdul Muneem
- Institute of Modern Physics, Chinese Academy of Sciences, China Yiming Gao, Engiang Liu
- School of Nuclear Science and Technology, Lanzhou University, China Yan He, Takehiko R. Saito
- Graduate School of Artificial Intelligence and Science, Rikkyo University, Japan Masato Taki
- Department of Physics, Saitama University, Japan Wenbo Dou, Shohei Sugimoto
- Department of Physics, Tohoku University, Japan Junya Yoshida

Summary

The WASA-FRS experiment at GSI

- Lifetime of hypertriton and ${}^{4}{}_{\Lambda}H$
- A state associated with Λ nn state
- Proton rich hypernucleus ⁹_ΛB
- Further experiments at GSI/FAIR

Nuclear emulsion + Machine learning

- Binding energy of hypertriton and ${}^4_\Lambda H$
- Binding energy of single-strangeness hypernuclei with multi-body decays
- Binding energy of double-strangeness hypernuclei

High Energy Nuclear Physics Lab. at RIKEN since 2019

Hypernuclear physics with

- Heavy ion beams
- Machine learning + Emulsion <u>Mesic-nuclei and mesic-atoms</u> <u>Short-range correlations for NN and LN in exotic nuclei</u> <u>Very precise neutron imaging and CT</u>

Ph.D. student position via the IPA programPostdoc position via the SPDR program

takehiko.saito@riken.jp

On June 3rd 2022

Assistant:

- Yukiko Kurakata Staff researchers:
- Yoshiki Tanaka
- He Wang

Postdocs:

- Hiroyuki Ekawa
- Manami Nakagawa

Ph.D. students:

- Vasyl Drozd
- Samuel Escrig
- Yiming Gao
- Yan He
- Ayumi Kasagi
- Engiang Liu
- Abdul Muneem Master students:
- Shohei Sugimoto
- Ayari Yanai

Technical staffs:

- Michi Ando
- Chiho Harisaki
- Risa Kobayashi
- Hanako Kubota

Chief scientist:

• Take R. Saito