- Multiplicity dependence of p/π and light nuclei ratio V. Vovchenko, V. K., Phys. Lett. B 835 (2022) 137577
- Fluctuations of $p \bar{p}$ and $p + \bar{p}$

O. Savchuk, V. Vovchenko, J. Steinheimer et al., Phys. Lett. B 827 (2022) 136983

Proton annihilation: To be or not to be

Me

- Lifetime of hadronic phase is short
- pion number effectively conserved

 $-4\pi \Leftrightarrow 2\pi$ suppressed (chiral symmetry)

- \Rightarrow finite μ_{π}
- increased re-generation of anti-protons

 $-5\pi \Leftrightarrow p + \bar{p}$

 Most transport calculations violate detailed balance exceptions: E. Seifert, W. Cassing, PRC 97 (2018) 024913,

O. Garcia-Montero et al, Phys. Rev. C 105 (2022) 064906

Why the discussion?

Rapp, Shuryak, PRL 86 (2001) 2980;

Need additional data to settle this issue

Proton yield at LHC

- Yield overestimated in standard thermal models However phase shift corrections seem to help
- Hints of annihilation in centrality dependence

New data @ 5.02 TeV

ALICE Collaboration, Phys. Rev. C 101 (2020) 044907

- Evidence for suppression of p/π ration in central collisions (~20%, >4 σ level)
- Due to hadronic phase?

Hadronic phase with partial chemical equilibrium (PCE)

Expansion of hadron resonance gas in partial chemical equilibrium at $T < T_{ch}$ [H. Bebie, P. Gerber, J.L. Goity, H. Leutwyler, Nucl. Phys. B '92; C.M. Hung, E. Shuryak, PRC '98] Chemical composition of stable hadrons is fixed, kinetic equilibrium maintained through pseudo-elastic resonance reactions $\pi\pi \leftrightarrow \rho$, $\pi K \leftrightarrow K^*$, $\pi N \leftrightarrow \Delta$, etc.

E.g.: $\pi + 2\rho + 3\omega + \cdots = const$, $K + K^* + \cdots = const$,

Effective chemical potentials:

 $\tilde{\mu}_j = \sum \langle n_i \rangle_j \mu_j,$ $\langle n_i \rangle_i$ – mean number of hadron *i* from decays of hadron *j*, i∈stable

Conservation laws:

 $\sum \langle n_i \rangle_j n_j(T, \tilde{\mu}_j) V = N_i(T_{ch}), i \in stable$ numerical solution *j*∈hrg

$$\sum_{j\in \mathsf{hrg}} s_j(\mathcal{T}, \widetilde{\mu}_j) \, V = S(\mathcal{T}_{\mathsf{ch}})$$

Implementation within **Thermal-FIST** package (since v1.3) [VV, H. Stoecker, Comput. Phys. Commun. 244, 295 (2019)] open source: https://github.com/vlvovch/Thermal-FIST

$$N + \Delta + N^* + \dots = const,$$

 $j \in HRG$

$$\{\mu_i(T)\}, V(T)$$

Mechanisms affecting the proton yield

- Re-evaluating the chemical equilibrium proton abundance
 - Baryonic excluded volume [VV et al., PLB 775 (2017) 71]
 - Finite resonance widths [VV, Gorenstein, Stoecker, PRC 98 (2018) 034906]
 - S-matrix approach to πN scattering [Andronic et al., PLB 792 (2019) 304] • centrality-independent
- Multiple freeze-out scenario (strange vs light) •

e.g. Flor, Olinger, Bellwied, PLB 814, 136098 (2021) centrality-independent

- Effects of the hadronic phase
 - Baryon annihilation, $N\bar{N} \rightarrow 5\pi$
 - No backreaction*, $5\pi \rightarrow N\bar{N}$. Some baryons will regenerate

centrality-dependent

Rapp, Shuryak, PRL 86 (2001) 2980; Pan, Pratt, PRC 89 (2014) 044911

*Gradually being implemented [Garcia-Montero et al., PRC 105 (2022) 064906]

Steinheimer, Aichelin, Bleicher, PRL 110 (2013) 042501

Partial chemical equilibrium with baryon annihilation

Add nucleon annihilations $N\bar{N} \leftrightarrow 5\pi$ into the PCE framework (Anti)nucleon and pions numbers no longer conserved, $N_N, N_{\bar{N}}, N_{\pi} \neq \text{ const. but}$ $N_N + N_{ar{N}}$

If $NN \leftrightarrow 5\pi$ proceeds in relative equilibrium,

Also, $\pi N \leftrightarrow \Delta$ equilibrium implies $\Delta \bar{N} \leftrightarrow 6\pi$ and $\Delta \overline{\Delta} \leftrightarrow 7\pi$, i.e. baryon resonances annihilate as well

 p/π ratio is suppressed during the cooling in the hadronic phase

$$\bar{L} + \frac{N_{\pi}}{5} = \text{const}$$
$$\mu_N = \mu_{\bar{N}} = \frac{5}{2}\mu_{\pi}$$

Baryon annihilation freeze-out temperature

Baryon annihilation remains relevant in the initial stage of the hadronic phase but freezes out earlier than (pseudo-)elastic hadron scatterings

Annihilation vs other mechanisms affecting the p/ π ratio

complementary

Another way to look at it

This is what is shown in the paper

Baryon annihilation and other mechanisms are complementary

11

Baryon annihilation and light nuclei

Naively, if nucleons are suppressed by $\gamma_N \sim 0.8$, then $\gamma_A \sim (\gamma_N)^A$ e.g. $\gamma_d \sim 0.64$ Quantitatively, use the Saha equation for nuclear abundances, $\mu_A = A \mu_N$

- Baryon annihilation causes *suppression in central collisions*

Can be tested with precision measurements of the centrality dependence

[Vovchenko et al, PLB 800 (2020) 135131]

Possible non-monotonic multiplicity dependence due to (another) suppression in small systems

Baryon annihilation and light nuclei

New data: ALICE Collaboration, arXiv:2211.14015

Indications for non-monotonic multiplicity dependence of d/p and ³He/p

Baryon annihilation and fluctuations

• $\kappa_2(p - \bar{p})$:

- Not affected by annihilation

- affected by baryon number conservation

- $\kappa_2(p + \bar{p})$:
 - affected by annihilation
 - Not affected by baryon number conservation

N.B.:

In UrQMD annihilation has NO detailed balance

- \rightarrow No reaction $5\pi \rightarrow p + \bar{p}$
- \rightarrow maximum effect

Savchuk et al., PLB 827, 136983 (2022)

Measure $\kappa_2(p - \bar{p})$ AND $\kappa_2(p + \bar{p})$ to constrain both amount of annihilation AND baryon correlation length

Baryon annihilation and fluctuations

ALICE Coll., arXiv:2206.03343

"wants" **short** range charge correlations "wants" long range charge correlation

ALICE Coll., arXiv:2204.10166

May resolve the tension between proton fluctuations that seem to prefer "global" baryon conservation vs light $d - \bar{p}$ correlations that prefer more "local" baryon conservation

- Statistically significant suppression of p/pi in central collisions @LHC
- Can be attributed to baryon annihilation in the hadronic phase
 - Extract T_{ann} from experimental data
 - Annihilations relevant but freeze-out earlier than hadron scatterings
 - PCE results are similar to hadronic afterburners
 - Testable suppression of light nuclei yields in central collisions
- Outlook
 - Effect on proton/light nuclei fluctuations and correlations
 - Hyperons (await exp. data on centrality dependence)
 - Modified thermal fits

Summary

