Status of the hyperon-nucleon scattering experiment at J-PARC

Koji Miwa (Tohoku Univ.) on behalf of J-PARC E40, E86 collaboration, HEF ex TF

EMMI Workshop, Feb. 13th – 17th, 2023

Contents

- Introduction
- Σp scattering experiment (J-PARC E40)
 - Σ^{-} p channels (Differential cross sections)
 - Σ^+ p elastic scattering (Differential cross sections and phase-shift analysis)
- Future project : J-PARC HEF extension project
 - Λp scattering with polarized Λ beam
 - High-resolution Λ hypernuclear spectroscopy at HIHR
- Summary

Hypernuclear physics

<u>Baryon-Baryon interaction</u> <u>Study of light Λ , Ξ hypernuclei</u> <u>Spectroscopy of heavy hypernuclei</u>

Realistic nuclear force : base for nuclear physics

Realistic Nucleon-Nucleon Potential (CD Bonn, AV18, Nijmegen I, II)

Updated based on a lot of scattering observables of NN scattering

Solid base for nuclear studies

Progress of theory & experiment of BB int. study

Theoretical progress

Hyperon-Nucleon int. w/ chiral effective field theory

Hyperon potential by Lattice QCD

BB interaction at almost physical point for multistrangeness sector K. Sasaki et al..

Improving accuracy w/ our new data

Experimental progress

BB interaction from femtoscopy

$$c(k^*) = \int S(r^*) \left| \Psi(\overrightarrow{k^*}, \overrightarrow{r^*}) \right|^2 d^3r$$

Fix source size(S(r^*)) \rightarrow Study interaction from wave function $(\Psi(\vec{k^*}, \vec{r^*}))$

125

100

75

50

-25

-50

-75 ⊬ 0.0

V[MeV] 25

Verification of quark Pauli repulsion

Data (t=12)

Function -

3.0

4.0

Verification of quark Pauli repulsion

Verification of quark Pauli repulsion

Constraint for BB int. theories

 $\cos\theta$

50 MeV/c FSS 50 MeV/c fss2 ESC08

Chiral EET 550 MeV/c

E251 data (0.3<n(GeV/c)<0.6)

Verification of quark Pauli repulsion

Constraint for BB int. theories

Verification of quark Pauli repulsion

Constraint for BB int. theories

J-PARC E40 experimental setup

Two successive two-body reactions

- Σ production by $\pi p \rightarrow K^+\Sigma$ reaction
- Σp scattering reaction

@ J-PARC K1.8 beam line

J-PARC E40 experimental setup

Two successive two-body reactions

- Σ production by $\pi p \rightarrow K^+\Sigma$ reaction
- Σp scattering reaction

@ J-PARC K1.8 beam line

Moderate forward peaking dependence

Comparison with theories

- fss2, Chiral EFT show a reasonable angular dependence.
- Nijmegen ESC models clearly underestimate the forward angle.

$d\sigma/d\Omega$ of Σ^+p elastic scattering

Comparison with theories

E40 data : much smaller than fss2 prediction and E289 results

- fss2, FSS (quark model) are too large compared to data
- Chiral EFT's momentum dependence does not match with data
- Nijmegen (ESC) models are rather consistent.

Phase shift analysis

Phase shift analysis for $\Sigma^{\!+\!} p \; d\sigma/d\Omega$

• Two parameters : $\delta({}^{3}S_{1})$, $\delta({}^{1}P_{1})$

dơ/dΩ [mb/sr

• Other phase shifts up to D wave :

fixed on NSC97f, ESC16, pp scat

Fitting $d\sigma/d\Omega$ with sum of partial waves

T. Nanamura et al., Prog. Theor. Exp. Phys. 2022 093D01

Phase shift analysis

Phase shift analysis for $\Sigma^{\!+\!} p \; d\sigma/d\Omega$

- Two parameters : $\delta({}^{3}S_{1})$, $\delta({}^{1}P_{1})$
- Other phase shifts up to D wave :

fixed on NSC97f, ESC16, pp scat

Comparison with HAL QCD Σ N potential

T. Nanamura et al., Prog. Theor. Exp. Phys. 2022 093D01

H. Nemura et al., EPJ Web of Conf., 175, 05030 (2018)

Derived phase shift suggest that the ${}^{3}S_{1}$ interaction is moderately repulsive.

Chiral EFT is in progress w/ E40 data

But, still ...

- no unique determination of all P-wave LECs possible
- one needs data from additional channels ($\Lambda p, \Sigma^- p \rightarrow \Sigma^0 n, ...$)
- one needs additional differential observables (polarizations, ...)

arXiv:2301.00722

Future project at J-PARC

J-PARC Hadron Experimental Facility Extension Project

Hadron property in nuclear medium Baryon spectroscopy

Perform physics not accessible in the present hadron hall Perform physics programs in parallel with twice more beam lines

Hyperon puzzle in neutron star

Strange Hadronic Matter in neutron star?

Hyperon's appearance is reasonable scenario because of the huge Fermi energy of neutrons in the inner core.

How can we reconcile ?

Hyperon appearance \rightarrow soften EOS

<u>3 Baryon Force (3BF):</u>

Significant repulsive contribution at high density

We have to understand the **density dependence of** Λ **N interaction** from Λ **binding energy data in hypernuclei**. \rightarrow determine **the strength of the** Λ **NN force**

Toward Ap scattering

<u>Reliable ΛN two-body interaction :</u>

key to deepen Λ hypernuclear physics

Femtoscopy from HIC

New cross section data from Jlab CLAS

New project at J-PARC

 Λp scattering w/ polarized Λ

- Feasibility test w/ E40 data
- Expected results in new experiment

21

ALICE Collaboration, arXiv:2104.04427

J. Rowley et al. (CLAS), Phys. Rev. Lett. 127 (2021) 272303

Λp scattering experiment with polarized Λ beam

Λ beam identification

J-PARC P86 (J-PARC EX project)

Λp scattering experiment with polarized Λ beam

$d\sigma/d\Omega$ and Spin observables in Λp scattering

No differential observables of Λp scattering SO FAR

Simulated results w/ $10^8 \Lambda$

--> Large uncertainty in P-wave and higher-wave interaction.

Theoretical prediction shows quite different angular dependence in $d\sigma/d\Omega$, A_y and D_y^y

These new scattering data become essential constraint to determine spin-dependent ΛN interaction

Λ binding energy measurement deep inside of nucleus : Unique for Λ hypernuclei²⁵

Nuclear density is different for each Λ orbital state

Two directions for study of the density dependence of ΛN interaction

- Mass number dependence of B_Λ
- Λ orbital dependence of B_{Λ}

Λ binding energy measurement deep inside of nucleus : Unique for Λ hypernuclei $^{^{26}}$

Nuclear density is different for each Λ orbital state

Two directions for study of the density dependence of ΛN interaction

- Mass number dependence of B_Λ
- Λ orbital dependence of B_{Λ}

Energy spectra of ${}^{13}_{\Lambda}$ C, ${}^{16}_{\Lambda}$ O, ${}^{28}_{\Lambda}$ Si, ${}^{51}_{\Lambda}$ V, ${}^{89}_{\Lambda}$ Y, ${}^{139}_{\Lambda}$ La, ${}^{208}_{\Lambda}$ Pb with Nijmegen ESC16 model

M.M. Nagels et al. Phys. Rev. C99, 044003 (2019)

Calculation w/ only ΛN int : Over bound

Λ binding energy measurement deep inside of nucleus : Unique for Λ hypernuclei 27

Nuclear density is different for each Λ orbital state

Two directions for study of the density dependence of ΛN interaction

- Mass number dependence of B_Λ
- Λ orbital dependence of B_{Λ}

Energy spectra of ${}^{13}_{\Lambda}$ C, ${}^{16}_{\Lambda}$ O, ${}^{28}_{\Lambda}$ Si, ${}^{51}_{\Lambda}$ V, ${}^{89}_{\Lambda}$ Y, ${}^{139}_{\Lambda}$ La, ${}^{208}_{\Lambda}$ Pb with Nijmegen ESC16 model

M.M. Nagels et al. Phys. Rev. C99, 044003 (2019)

Accurate B_{Λ} measurement

Effect of density dependence of ΛN interaction

Difference

Λ binding energy measurement deep inside of nucleus : Unique for Λ hypernuclei $^{^{28}}$

Two directions for study of the density dependence of ΛN interaction

- Mass number dependence of B_Λ
- Λ orbital dependence of B_{Λ}

Energy spectra of ${}^{13}_{\Lambda}$ C, ${}^{16}_{\Lambda}$ O, ${}^{28}_{\Lambda}$ Si, ${}^{51}_{\Lambda}$ V, ${}^{89}_{\Lambda}$ Y, ${}^{139}_{\Lambda}$ La, ${}^{208}_{\Lambda}$ Pb with Nijmegen ESC16 model

M.M. Nagels et al. Phys. Rev. C99, 044003 (2019)

Accurate B_{Λ} measurement

Effect of density dependence of ΛN interaction

Difference

This density dependence should be explained from ΛNN force.

 \rightarrow Predict Λ N int. in higher density nuclear matter.

Λ binding energy measurement deep inside of nucleus : Unique for Λ hypernuclei²⁹

Nuclear density is different for each Λ orbital state

Two directions for study of the density dependence of ΛN interaction

- Mass number dependence of B_Λ
- Λ orbital dependence of B_Λ

Energy spectra of ${}^{13}_{\Lambda}$ C, ${}^{16}_{\Lambda}$ O, ${}^{28}_{\Lambda}$ Si, ${}^{51}_{\Lambda}$ V, ${}^{89}_{\Lambda}$ Y, ${}^{139}_{\Lambda}$ La, ${}^{208}_{\Lambda}$ Pb with Nijmegen ESC16 model

M.M. Nagels et al. Phys. Rev. C99, 044003 (2019)

Accurate B_{Λ} measurement

Effect of density dependence of ΛN interaction

Difference

 ΛNN repulsive interaction is introduced to explain Λ hypernuclear binding energy

This density dependence should be explained from ΛNN force.

 \rightarrow Predict Λ N int. in higher density nuclear matter.

High-resolution Λ hypernuclear spectroscopy at HIHR

Summary and future prospects

- Many progresses have been obtained in the BB interactions study.
 - Lattice QCD, Chiral EFT, ...
 - Femtoscopy is successfully used for the hadron-hadron interaction study.
 - YN scattering experiment gets possible!
- Systematic measurements of Σp scattering at J-PARC
 - $d\sigma/d\Omega$ for Σ^+p , Σ^-p , $\Sigma^-p \rightarrow \Lambda n$ scatterings with ~10% level accuracy for fine angular pitch ($d\cos\theta=0.1$)
 - Momentum dependence of $\Sigma^+ p \, \delta({}^3S_1)$ channel was derived (-20 ~ -35 degrees)
- Future project : Λp scattering w/ polarized Λ beam
 - $d\sigma/d\Omega$ and spin observables (analyzing power, depolarization)
 - \rightarrow reinforce the current ΛN interaction for deepening hypernuclear physics.
- High-resolution spectroscopy up to medium and heavy Λ hypernuclei
 - New HIHR beam line with dispersion-matching technique will open new era of unprecedent resolution of 400 keV (FWHM)
 - By using this high resolution, the ΛNN 3body interaction will be examined.

Phase shift in Chiral EFT NNLO and U_{Σ}

 ΣN (I=3/2) phase shift in chiral EFT

