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Cluster and hyper-cluster production in HICs with PHQMD

Exploring the QCD-phase-diagram with clusters 
as experimental observables.

Understanding the production of clusters in 
relativistic heavy-ion collisions:

How can weakly bound clusters survive 
in the hot and dense environment of a HICs?

Modeling the time evolution of cluster formation and the origin of their 
production.

Motivation

Challenge

’Ice in fire puzzle‘
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Modelling of cluster formation in HIC 
Statistical models
- Production of nuclei depending on T and μB at chemical freeze-out & particle mass

Coalescence models
- Formation of nuclei by nucleons & hyperons that are close in coordinate and 

momentum spaces at freeze-out time

Hybrid models for cluster production
- sudden transition from a dynamical model to clusterisation

e.g . UrQMD + afterburner

=> no dynamical cluster formation during time evolution
=> no information on the dynamics of clusters formation & microscopic origin

A. Andronic et al., Phys. Lett. B697 (2011) 
203-207.
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Modeling of dynamic cluster formation in HIC

Dynamical modeling of cluster formation based on interactions.

Interaction mechanism in transport models:
- via potential interaction - potential mechanism
- by scattering - kinetic mechanism 

=> Cluster formation is sensitive to nucleon dynamics.

Modeling of nucleon-nucleon potential interactions:
- QMD (quantum-molecular dynamics) – allows to keep correlations                   
- MF (mean-field based models) – correlations are smeared out
- Cascade – correlations by potential interactions missing

5
V. Kireyeu, Phys.Rev.C 103 (2021) 5

QMD

MF

Cascade:

this talk

Cluster at final time



Parton-Hadron-Quantum-Molecular Dynamics
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Initial A+A collisions Formation of QGP Partonic phase Hadronization Hadronic phase

Initialization
nuclei

Cluster recognition MST or SACA

propagation of 
baryons

PHSD

QMD

interactions of hadrons

propagation of partons
local ε > εc dissolution of pre-hadrons

Primary collisions
pre-hadronic states

interactions of partons

propagation of mesons

Correlations between nucleonsRelativistic considerations + + Cluster recognition

= n-body microscopic transport approach for the description of heavy-ion dynamics with dynamical cluster formation
from low to ultra-relativistic energies

collision
integral

PHSD: W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168(2009)

J. Aichelinet al., PRC 101 (2020) 044905



QMD propagation

Generalized Ritz variational principle

Assume that                                                     for N particles (neglecting antisymmetrization!) 

Ansatz: trial wave function for one particle “i” :  Gaussian with width L centered at 0 0,i ir p

Equations-of-motion (EoM) for Gaussian centers in coordinate and momentum space:

L=4.33 fm2

Aichelin Phys. Rept. 202 (1991) 

= n-body transport approach

J. Aichelin et al.,  PRC 101 (2020) 044905 
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QMD potentials and EoS
expectation value of Hamiltonian

Skyrme interaction (’static’): Effective density dependent nucleon-nucleon interactions

Interaction density (with relativistic extension):

Parameter of the nuclear equation of state in PHQMD

*Work in progress: implementation of momentum-dependent potential (M. Winn) 

EoS for infinite matter at rest
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compression modulus K



Highlights: PHQMD ‚bulk‘ dynamics from SIS to RHIC

PHQMD: J. Aichelin et al.,  PRC 101 (2020) 044905 

=> PHQMD provides a good description of hadronic ‘bulk’ observables from SIS to RHIC energies. 9



Minimum Spanning Tree (MST)
Cluster criterion: distance of nuclei
Algorithm: search for accumulations of particles in coordinate space

1. Two particles i & j are bound if:
|ri-rj| < 4.0 fm

2. Particle is bound to cluster if bound with at least one particle of cluster

10

Remark: additional momentum cuts lead to a small changes: particles with large relative momentum are 
mostly not at the same position (V. Kireyeu,  Phys.Rev.C 103 (2021) 5)



Cluster stability over time
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Semiclassical model QMD: 

Clusters not described as ‘quantum objects’
with minimal average kinetic energy for nucleons
=> cluster-nucleon can have enough kinetic energy to escape cluster
=> “bound” cluster at time t can spontaneously dissolve at t + Δt

Skyrme potential is not relativistic:
calculation of cluster binding energy in cluster-system after Lorentz-boost
=> baryons have different times in cluster-frame 
=> sign of binding energy can change

=> cluster multiplicities decrease over time

=> time selection needed for every nuclei specie for correct multiplicities
=> form of y-, pT- distribution & ratio of particles don’t change over time

New: Stabilisation procedure aMST
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Relativistic fragment formation time for spectra
Consideration of time dilatation for the cluster identification:
time t0  in cluster rest-system is delayed vs. time t in the center of 
mass system depending on y

=> create spectra at the same time in the cluster rest-system t0
=> transformation: t = t0 cosh(y) 

cluster system   center of mass system

cluster system   
center of 
mass 
system

t =
t0 = 53 fm/c

Pb-Pb 8.8 GeV 0 - 10 %

S. Gläßel et al., PRC 105 (2022) 1
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Light cluster production at √sNN = 3 GeV  

=> PHQMD reproduces STAR* pT-
spectra for protons, deuterons, tritions
3He and 4He.

S. Gläßel, PHQMD calculations: arXiv:2208.11802

3He 4He

protons

tritons

* (preliminary) STAR data – talk by Hui Liu at QM’2022 

deuterons
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Light cluster production at AGS energies
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=> y- & pT-spectra for 
deuterons, tritions and 3He 
from E864* at √sNN = 4.9 
GeV are nicely described by 
PHQMD.

14*T. A. Armstrong et al: „Measurements of light nuclei production in pbeam=11.5A GeV/c Au+Pb heavy-ion collisions“, PHYSICAL REVIEW C, VOLUME 61, 064908 (2002)

t = t0 cosh(y) 

S. G. et al., PRC 105 (2022) 1



Cluster production at SPS & RHIC energies

=> The PHQMD results for d and 3He agree with NA49 and STAR data.
S. G. et al., Phys. Rev. C 105 (2022) 1

t = t0cosh(y),  t0 = 53 fm/c
d

3He

t = t0cosh(y),  t0 = 67 fm/c
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NA49 √sNN = 8.8 GeV STAR √sNN = 7.7 GeV – 200 GeVdeuterons

J. Adam et al. (STAR), Phys. Rev. C 99, 064905 (2019)T. Anticic et al. (NA49), Phys. Rev. C 94, 044906 (2016)



Excitation function of multiplicity of p, p, d & p/d-ratio 

=> The p, !p yields at y~0 are stable, the d, 
!d yields are best described at t= 60-70 fm/c.

S. G. et al., PRC 105 (2022) 1
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Coalescence parameter for d and 3He

S. G. et al., Phys. Rev. C 105 (2022) 1

d 3He

Coalescence parameter:
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=> Good description of BA for energies between 5 – 200 GeV.

=> No remarkable structure for BA as a function of pT, only slight increase.

=> Probability that baryons with pT/A form a cluster with size A more or less 
independent of pT, only increases slightly.

E864 √sNN = 4.9 GeV STAR √sNN = 7.7 GeV – 200 GeV
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Hypernuclei production at √sNN = 3.0 and 4.9 GeV  

S. G. et al., Phys. Rev. C 105 (2022) 1

E864 √sNN = 4.9 GeV

Assumption for nucleon-hyperon 
potential: VNL = 2/3 VNN

=> Reasonable description 
of hypernuclei production at  
√𝒔NN = 3.0 GeV
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=> trend of the experimental STAR* 
!
"H & !#H pT-spectra at √𝒔NN=3 is 
produced well
=> yields are slightly overpredicted 

STAR √sNN = 3.0 GeV

*Yue-Hang Leung: First 
results of H3L & H4L (dN/dy, 
cτ, v1) from 3 GeV Au+Au
collisions with the STAR 
detector (CPOD2021)

t = t0 cosh(y) 
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Clusters are not stable over time
1) Clusters not described as ‘quantum objects’ : cluster can dissolve
2) Skyrme potential is not relativistic: binding energy can change

Advanced MST
- Consider asymptotic state: clusters and free nucleons
- Track the freezeout-time for each baryon = time of the last collision

a) If time of cluster disintegration > baryon freeze-out time  (and if EB < 0) : 
=> restore cluster 

b) If sign of binding energy changes after baryon freeze-out time: 
=> restore EB

+ extra condition: EB < 0 negative binding energy for identified clusters 

Stabilisation procedure Advanced MST
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dN/dy time evolution for deuteron at √sNN = 4.9 GeV
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0.2 GeV < pT < 0.4 GeV 0.2 GeV < pT < 0.4 GeV

=> With stabilisation, 
multiplicity starts to drop 
slower at around 60 fm/c.

=> At the final time, deuteron 
multiplicity is ~2 times higher 
with stabilisation.

0.2 GeV < pT < 0.4 GeV 0.2 GeV < pT < 0.4 GeV 20



Stable light nuclei at √sNN = 4.9 and 7.7 GeV with aMST
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PHQMD with stabilisation procedure fits the experimental data at √sNN = 4.9 and 7.7 GeV very well for 
triton and 3He.

Deuterons are underestimated => contribution of deuterons formed by inelastic scattering.
See talk on Tues, 4.30 pm by Elena Bratkovskaya.
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Summary & Conclusion
PHQMD
• is a microscopic n-body transport approach to describe HIC and dynamical cluster formation
• is a combined model: PHSD + QMD + MST | SACA
• transports baryons with QMD to keep potential interactions among baryons and allow cluster formation
• identifies with MST the clusters based on the distance between baryons

=> reproduces cluster and hypercluster data on dN/dy, dN/dpT and ratios from AGS to top RHIC energies

• The newly developed stabilisation routine in advanced MST overcomes time dependency of cluster multiplicities.

Outlook
• study of hyper-nuclei with more realistic potentials
• extension to LHC energies 

Talk on Tuesday, 4.30 pm by Elena Bratkovskaya:
How can weakly bound clusters survive in the hot and dense environment of a heavy ion collision?
Deuteron production based on kinetic interactions / scattering
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