The UrQMD transport model and its applications

Marcus Bleicher

Institut für Theoretische Physik, Goethe Universität – Frankfurt Helmholtz Research Academy Hesse GSI Helmholtz Center

Marcus Bleicher, EMMI-Workshop, 13.2.2023

Most interesting results

- Listen to the talk of
- Tom Reichert (Tuesday) Thermal model or not?!
- Jan Steinheimer (Wednesday) Hyper clusters!

Motivation

Fig. 1. Schematic phase diagram of hadronic matter. ρ_B is the density of baryonic number. Quarks are confined in phase I and unconfined in phase II.

- Learn about phase structure of QCD
- Explore strangeness, fluctuations, leptons, clusters, spectra, flow, fluctuations, correlations,...
- Unfortunately we do not have QCD in box \rightarrow simulations
- Unfortunately modelling a phase transition is still not fully possible

Time Evolution of Heavy Ion Collisions

Ultra-relativistic Quantum Molecular Dynamics (UrQMD)

Hadron cascade (standard mode)

- Based on the propagation of hadrons
- Rescattering among hadrons is fully included
- String excitation/decay (LUND picture/PYTHIA) at higher energies
- Provides a solution of the relativistic n-body transport eq.:

 $p^{\mu} \cdot \partial_{\mu} f_i(x^{\nu}, p^{\nu}) = \mathcal{C}_i$

The collision term C includes more than 100 hadrons

 "Standard Reference" for low and intermediate energy hadron and nucleus interactions

M. Bleicher et al, J.Phys. G25 (1999) 1859-1896

nucleon	Δ	Λ	Σ	Ξ	Ω
N ₉₃₈	Δ_{1232}	Λ_{1116}	Σ_{1192}	Ξ_{1317}	Ω_{1672}
N_{1440}	Δ_{1600}	Λ_{1405}	Σ_{1385}	Ξ_{1530}	
N_{1520}	Δ_{1620}	Λ_{1520}	Σ_{1660}	Ξ_{1690}	
N_{1535}	Δ_{1700}	Λ_{1600}	Σ_{1670}	Ξ_{1820}	
N_{1650}	Δ_{1900}	Λ_{1670}	Σ_{1775}	Ξ_{1950}	
N_{1675}	Δ_{1905}	Λ_{1690}	Σ_{1790}	Ξ_{2025}	
N_{1680}	Δ_{1910}	Λ_{1800}	Σ_{1915}		
N_{1700}	Δ_{1920}	Λ_{1810}	Σ_{1940}		
N_{1710}	Δ_{1930}	Λ_{1820}	Σ_{2030}		
N_{1720}	Δ_{1950}	Λ_{1830}			
N_{1900}		Λ_{1890}			
N_{1990}		Λ_{2100}			
N ₂₀₈₀		Λ_{2110}			
N_{2190}	ne m	lodel	- Ur(
N ₂₂₀₀					
N_{2250}					

0-+	1	0++	1++
π	ρ	a_0	a_1
K	K^*	K_0^*	K_1^*
$\mid \eta \mid$	ω	f_0	f_1
η'	ϕ	f_0^*	f_1'
1+-	2^{++}	$(1^{})^*$	$(1^{})^{**}$
b_1	a_2	$ ho_{1450}$	$ ho_{1700}$
K_1	K_2^*	K^{*}_{1410}	K_{1680}^{*}
h_1	f_2	ω_{1420}	ω_{1662}
h_1'	f_2'	ϕ_{1680}	ϕ_{1900}

List of included particles

- Binary interactions between all implemented particles are treated
- Cross sections are taken
 from data or models
- Resonances are implemented in Breit-Wigner form
- No in-medium modifications

Baryon-baryon scattering cross section

 Phase space x matrix element:

 $\sigma_{tot}^{BB}(\sqrt{s}) \propto (2S_D + 1)(2S_E + 1)\frac{\langle p_{D,E} \rangle}{\langle p_{A,C} \rangle} \frac{1}{s} |\mathcal{M}|^2$

- Matrix element is fitted to data for groups of resonance channels
- Detailed balance is fulfilled for the inverse reaction:

$$\sigma(y \to x) \, p_y^2 \, g_y = \sigma(x \to y) \, p_x^2 \, g_x$$

Meson-baryon scattering cross section (resonances)

resonance	mass	\mathbf{width}	$N\gamma$	$N\pi$	$N\eta$	$N\omega$	$N \varrho$	$N\pi\pi$	$\Delta_{1232}\pi$	$N^*_{1440}\pi$	ΛK
N_{1440}^{*}	1.440	200		0.70				0.05	0.25		
N_{1520}^{*}	1.520	125		0.60				0.15	0.25		
N_{1535}^{*}	1.535	150	0.001	0.55	0.35			0.05		0.05	
N^{*}_{1650}	1.650	150		0.65	0.05			0.05	0.10	0.05	0.10
N_{1675}^{*}	1.675	140		0.45					0.55		
N^{*}_{1680}	1.680	120		0.65				0.20	0.15		
N^{*}_{1700}	1.700	100		0.10	0.05		0.05	0.45	0.35		
N^{*}_{1710}	1.710	110		0.15	0.20		0.05	0.20	0.20	0.10	0.10
N_{1720}^{*}	1.720	150		0.15			0.25	0.45	0.10		0.05
N^{*}_{1900}	1.870	500		0.35		0.55	0.05		0.05		
N_{1990}^{*}	1.990	550		0.05			0.15	0.25	0.30	0.15	0.10
N^{*}_{2080}	2.040	250		0.60	0.05		0.25	0.05	0.05		
N_{2190}^{*}	2.190	550		0.35			0.30	0.15	0.15	0.05	
N^{*}_{2220}	2.220	550		0.35			0.25	0.20	0.20		
N_{2250}^{*}	2.250	470		0.30			0.25	0.20	0.20	0.05	
Δ_{1232}	1.232	115.	0.01	1.00							
Δ^*_{1600}	1.700	200		0.15					0.55	0.30	
Δ^*_{1620}	1.675	180		0.25					0.60	0.15	
Δ_{1700}^{*}	1.750	300		0.20			0.10		0.55	0.15	
Δ^*_{1900}	1.850	240		0.30			0.15		0.30	0.25	
Δ^*_{1905}	1.880	280		0.20			0.60		0.10	0.10	
Δ^*_{1910}	1.900	250		0.35			0.40		0.15	0.10	
Δ^*_{1920}	1.920	150		0.15			0.30		0.30	0.25	
Δ_{1930}^{*}	1.930	250		0.20			0.25		0.25	0.30	
Δ^*_{1950}	1.950	250	0.01	0.45			0.15		0.20	0.20	
$B(\sqrt{s}) = \sum_{i=1}^{n} \frac{i_{i-1}}{n} m_{i-1} m_{i-1}$					$ I_{-}M_{-}\rangle$	$2S_R + 1$					
$(v^{o}) =$	$\sum_{R=\Delta, N}$	$\langle JB, V^* \rangle$	mB,	$_{JM},$		J_R ,	1V1 R/	(2S)	$_{B}+1)$	$(2S_M \cdot$	+1)
	$\times \frac{\pi}{\pi}$		$\Gamma_{R \rightarrow}$	$_{MB}\Gamma$	tot						
	p_{cm}^2	(M_R)	-	$\overline{s})^2$ -	$+\Gamma_{tc}^2$	t/4	,				

Marcus Bleicher, EMMI-Workshop, 13.2.2023

E_{cm} (GeV)

Meson-meson scattering

- Meson-meson scattering in the resonance region is treated in analogy to the meson-baryon scattering
 - At higher energies, also t-channel excitation is taken into account

•

Proton-proton collisions

Deuteron (anti-deuteron): ratios

Absolute yields

	$\sqrt{s_{NN}}$	(TeV)	dN/dy
	·	ALICE	UrQMD
	0.9	$(1.12 \pm 0.09 \pm 0.09) \times$	$10^{-4} (0.96 \pm 0.05) \times 10^{-4}$
d	2.76	$(1.53 \pm 0.05 \pm 0.13) \times$	$10^{-4}~(1.47\pm0.06) imes10^{-4}$
	7	$(2.02 \pm 0.02 \pm 0.17) \times$	$10^{-4}~(2.05\pm0.09)\times10^{-4}$
	0.9	$(1.11\pm0.10\pm0.09) \times$	$10^{-4}~(1.00\pm0.05)\times10^{-4}$
\overline{d}	2.76	$(1.37 \pm 0.04 \pm 0.12) \times$	$10^{-4}~(1.55\pm0.07)\times10^{-4}$
	7	$(1.92 \pm 0.02 \pm 0.15) \times$	$10^{-4}~(2.22\pm0.09)\times10^{-4}$

Good description even of pp by coalescence

Absolute yields in line with ALICE data

S. Sombun, M. Bleicher et al, *Phys.Rev.C* 99 (2019) 1, 014901 •

Comparison to low energy data (small systems)

2.5.10-3 10^{2} 2.(101 Ratio 10^{0} 1.(³) $\hat{\tau}$ 10 Si+Au, b = 2 fm, $E_{lab}=14.6$ A GeV 10^{-2} 5.(UrQMD, protons UrOMD, deuterons 10^{-3} E802, protons E802, deuterons 10 0 3 4 y

Proton and deuteron rapidity distribution in p+Be, p+Au reaction at E_{lab}=14.6 AGeV Proton and deuteron rapidity distribution for Si+Au reactions at E_{lab}=14.6 AGeV

• Baryon energy loss in line with data at low energies

Marcus Bleicher, EMMI-Workshop, 13.2.2023
 S. Sombun, M. Bleicher et al, *Phys.Rev.C* 99 (2019) 1, 014901

Side remark on anti-deuterons

- Substantial amount of anti-deuteron production even near threshold
- Relevance for dark matter...

• Marcus Bleicher, EMMI-Workshop, 13.2.2023

S. Sombun, M. Bleicher et al, *Phys.Rev.C* 99 (2019) 1, 014901 •

Ultra-relativistic Quantum Molecular Dynamics (UrQMD)

Potential mode calculations (RHIC-BES energies):

 Cascade calculation can be supplemented by hadronic potentials – standard: hard/soft Skyrme type

Studying effects of the phase transition

 Inclusion of different potentials (including those mimicking a phase transition or cross over) allows to make prediction of effects

> Steinheimer, Moronenko, Sorensen, Nara, Koch Bleicher, *Eur.Phys.J.C* 82 (2022) 911

Ultra-relativistic Quantum Molecular Dynamics (UrQMD)

Hybrid mode calculations (RHIC and LHC energies)

- At energies above 100 GeV (CM-energy) the early intermediate state should not be modeled by strings and particles alone
- To take the local equilibration and the phase transition to a QGP into account, a hydrodynamic phase is introduced
- This is known as hybrid model (Boltzmann+hydrodynamics), hybrid models have become the standard at RHIC and LHC energies

Petersen, Steinheimer, Burau, Bleicher et al, Phys.Rev. C78 (2008) 044901

Option: Hybrid model

- Initial State:
 - o Initialization of two nuclei
 - Non-equilibrium hadron-string dynamics
 - o Initial state fluctuations are included naturally

- 3+1d Hydro +EoS:
 - o SHASTA ideal relativistic fluid dynamics
 - Net baryon density is explicitly propagated
 - $\circ~$ Equation of state at finit μ_{B}

- Final State:
 - o Hypersurface at constant energy density
 - Hadronic rescattering and resonance decays within UrQMD

H.Petersen, M. Bleicher et al, PRC78 (2008) 044901

Initial State

Contracted nuclei have
 passed through each other

$$t_{start} = \frac{2R}{\gamma v}$$

- Energy is deposited
- Baryon currents have separated
- Energy-, momentum- and baryon number densities are mapped onto the hydro grid
- Event-by-event fluctuations are taken into account
- Spectators are propagated separately in the cascade

(J.Steinheimer et al., PRC 77,034901,2008)

• Marcus Bleicher, EMMI-Workshop, 13.2.2023

Equations of State

Ideal relativistic one fluid dynamics:

 $\partial_{\mu} T^{\mu\nu} = 0$ and $\partial_{\mu} (nu^{\mu}) = 0$

- HG: Hadron gas including the same degrees of freedom as in UrQMD (all hadrons with masses up to 2.2 GeV)
- CH: Chiral EoS from quark-meson model with first order transition and critical endpoint
- BM: Bag Model EoS with a strong first order phase transition between QGP and hadronic phase

D. Rischke et al., NPA 595, 346, 1995,

D. Zschiesche et al., PLB 547, 7, 2002

Papazoglou et al., PRC 59, 411, 1999

J. Steinheimer, et al., J. Phys. G38 (2011) 035001

Hadronization, Particlization, Decoupling

Experiments observe finite number of hadrons in detectors

Hadronization controlled by the equation of state

Sampling of particles according to **Cooper-Frye** equation: -Respect **conservation laws**, maybe even locally? -Introduces fluctuations on its own

$$E\frac{dN}{d^3p} = \int_{\sigma} f(x,p) p^{\mu} d\sigma_{\mu}$$

- → Yields 4-momenta, 4-positions of hadrons on the hypersurface
- → Final propagation Relativistic transport equation $(p^{\mu}\partial_{\mu})f = I_{coll}$

Sophisticated 3D hypersurface finder to resolve interesting structures in event-by-event simulations Petersen, Huovinen, arXiv:1206.3371 Marcus Bleicher, EMMI-Workshop, 13.2.2023

Final State Interactions (after Hydro)

Marcus Bleicher, EMMI-Workshop, 13.2.2023

Dileptons from hybrid approaches

- Using in-medium dilepton rates, a hydrodynamic evolution with a chiral EoS, and late stage hadron dynamics
- Allows for a full description of the dilepton yields at SPS energies

Santini, Steinheimer, Bleicher, et al, Phys.Rev.C 84 (2011) 014901

• Marcus Bleicher, EMMI-Workshop, 13.2.2023

- Transport models are good tools to describe the dynamics of matter in heavy ion collisions
- UrQMD 3.5 has different modes to allow for the inclusion of various different physics scenarios
- These scenarios can be systematically tested and allow for predictions/analysis of a broad spectrum of observables