KEK isotope separation system for β -decay spectroscopy of r-process nuclei

Y.X. Watanabe, RNB group (KEK)

- 1. Outline
- 2. Multinucleon transfer reaction of ¹³⁶Xe+¹⁹⁸Pt
- 3. Gas catcher system for collection and separation
- 4. Detection system for lifetime measurements
- 5. Summary

- Lifetime measurements of N=126 nuclei in our 5-year project since 2010
- Multinucleon transfer (MNT) reaction to access N=126 nuclei
 - C.H. Dasso et al., Phys. Rev. Lett. 73 (1994) 1907.
 - V. Zagrebaev and W. Greiner, Phys. Rev. Lett. 101 (2008) 122701.
 - L. Corradi et al., J. Phys. G: Nucl. Part. Phys. 36 (2009) 113101.
- From ²⁰⁴Pt down to ²⁰⁰W by ¹³⁶Xe+¹⁹⁸Pt MNT reaction

KEK isotope separation system

MNT reactions of ¹³⁶Xe+¹⁹⁸Pt

Excitation functions for the production of *N* = 126 isotones

Expected yields for *N* = 126 isotones

(http://personalpages.to.infn.it/~nanni/grazing)

for the lifetime measurements of rare channel products. 5

Gas catcher system - Laser resonance ionization + ISOL -

Laser resonance ionization

Frequency tunable dye lasers

Total efficiency of gas catcher system

KUTY : T. Tachibana, M. Yamad, Proc. Inc. Conf. on exotic nuclei and atomic masses, Arles, 1995, p763.

10

Beam-on/off time-sequence

Statistical estimation

²⁰⁰W : production rate = 0.11 pps $\rightarrow ~1 \times 10^4$ particles/day

Summary

- Lifetime measurements for unstable nuclei produced by MNT reactions of ¹³⁶Xe+¹⁹⁸Pt in 5 years: ²⁰⁴Pt~²⁰⁰W (*N*=126)
- Gas cell + laser resonance ionization + ISOL rapid & efficient collection with laminar flow Z & A separation with laser resonance ionization & ISOL efficiency = 5.0% for ²⁰⁰W (T_{1/2}~423 ms)
- Tape transport + β-decay measurements
 Three detection stations → suppression of decay loss
 160 counts/day for ²⁰⁰W → lifetime is determined with 10% error
- Research & Development in 2 years
 Multi-nucleon transfer reaction: feasibility
 Gas cell design: transport efficiency, transport time profile
 Laser resonance ionization: wavelength tuning
 for most efficient ionization-scheme
- Studies toward waiting nuclei

Low-energy intense neutron-rich RIBs such as ¹⁴⁰Xe

