A Large Acceptance Spectrometerfor Deep-Inelastic Scattering with Reaccelerated Radioactive Beams

George A. Souliotis

Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greeceand **Cyclotron Institute, Texas A&M University,College Station, Texas, USA**

2nd IRIS Workshop , GSI, Darmstadt, Germany, Nov. 19, 2010

A Large Acceptance Spectrometer* for DIC with RIBs at E/A ~6-15 MeV:

Research objectives:

 structure studies of neutron-rich nuclei (at high spin states) around the projectile**• reaction dynamics (e.g. peripheral collisions, N/Z equilibration, symmetry energy, EOS)**

Present work:

Preliminary design of a large acceptance spectrometer for above-barrier energies: E/A=6-15MeV/u

Requirements :

- **Or** design specific for binary reactions
- \blacksquare large angular acceptance ($\Delta\Omega$ >20msr) and high momentum resolving power (>1000) via trajectory reconstruction ["Raytracing spectrometer"]
- \bullet Z, A identification of projectile residues up to Z \sim 60, A \sim 150
- flexibility in target and focal plane detector setups:target location: accommodate a 4π Gamma Array (and charged particle array) focal plane: accommodate a decay setup
- \bullet spectrograph and associated detectors must be rotatable (θ = -20-120 degrees)

*G. A. Souliotis, Nucl. Instrum. Methods B 266 (2008) 4213

Large Acceptance Spectrometers in Europe:

VAMOS: RNBs from SPIRAL,combined withEXOGAM and TIARA

Fig. 6.5: Three-dimensional drawing of the VAMOS spectrometer at GANIL,

 $E-71$

PRISMA (combined with CLARA)

Fig. 6.6: The PRISMA spectrometer at LNL, Legnaro, in Italy.

MAGNEX (RNBs from EXCYT or FRIBs)

Example of nuclide production in DIC with RIBs:

projectiles

Rate estimate: 94 Kr from "FRIB" at \sim 10⁸ pps, 64 Ni (20mg/cm²) : $1mb \Rightarrow 200 \text{ pps}$

L. Tassan-Got and C. Stephan, Nucl. Phys. A524 121 (1991) **GEMINI:** R. Charity et al., Nucl. Phys. A483 391 (1988) *References:

LAS prelim. specifications: QQD type, $Bρ_{max} = 2.5Tm$

Large Bore Quadrupoles (30-40cm diameter). Large Gap Dipole magnet (20-25cm)Room temperature vs superconducting magnets (either option possible)

Target - Q1 distance: 30-120cm. "Nominal": 50cm

Quadrupole Q1: aperture: 30cm, length 60cm, $B_{\text{max,tip}} = 1.5T$ (Y focusing) **Quadrupole Q2**: aperture: 40cm, length 80cm, $B_{max,tip} = 0.5T$ (X focusing). Collins type (elliptical aperture) can also be used (e.g.VAMOS)Superposition of higher multipoles is also considered

Dipole: bending radius: 150cm, bending angle: 70° , gap: $25cm$, $B_{max} = 1.7T$ Entrance and exit pole face rotation: $+20^{\circ}$ (Y-focusing) Entrance and exit pole face curvatures $(1/R_1=0.2, 1/R_2=0.0)$ to be optimized (along with inclusion of possible higher-order profiling etc.)

Dipole - MWPC1: 2.0m, MWPC 1- MWPC2: 1.0m (this version, can be shorter also)

Length of **central trajectory**: 7.6 m Appropriate for mass A determination via TOF: 130ns at 15MeV/u, 160ns at 10MeV/u, 210ns at 6 MeV/u

*G. A. Souliotis, Nucl. Instrum. Methods B 266 (2008) 4213

Rays through LAS: **⁹⁴Kr34+(15 MeV/u)**Bρ=1.54 Tm

Ion Optics calculations with COSY-Infinity

Large Acceptance Spectrograph : optics summary:

First-order optics(point-to-point focusing in x,y at MWPC2**):**Dispesions: δ)= 4.6cm/%, (θ / δ)= 12 mr/% Magnifications: $M_x=(x/x) = -0.80$, $M_y=(y/y) = -7.0$ $M_{\theta} = (\theta/\theta) = 1.24$, $M_{\phi} = (\phi/\phi) = -0.14$ Path length dependences: $(l/\delta) = 3.5$ cm/%, $(l/\theta) = -0.3$ cm/mr

The most important higher-order aberrations in x,y (cm)at full acceptable phace space: $\Delta\theta$ = ±50mr, $\Delta\phi$ = ±200mr, $\Delta p/p$ = ±5 %

Horizontal (X) Vertical(Y) 2nd order: $(x/\theta \delta)$ => 4.5cm (y/ $\theta \phi$)=> -2.2cm (x/δ^2) => -2.1cm $(y/\phi\delta)$ => 6.8cm 3d order: (x/θ^3) => 1.5cm (y/ϕ^3) => -4.0cm $(x/\theta \delta^2)$ => -0.8cm (y/ $\theta^2 \phi$) => 0.6cm (y/θφδ)=> -0.5cm

Rays through LAS: **⁹⁴Kr34+(15 MeV/u)** ^Bρ=1.54 Tm

Ion Optics calculations with COSY-Infinity

Rays through LAS: **⁹⁴Kr34+(15 MeV/u)** ^Bρ=1.54 TmMultipoles (O,D,DD) superimposed on Q2, Entrance pole face of dipole curved with R=+5m (convex)

LAS: Relations at the Focal Plane

5th order ion optics calculations with COSY-I

Details of Experimental Procedures:

Momentum (=>Bρ**) reconstruction:**

Measured quantities: after target: (MCP): θ_0, ϕ_0 At the focal plane detectors: $(MWPC1,2)$: $x_f, y_f, \theta_f, \phi_f$

Assuming 1.5mm beam spot on target, x,y position resolutions of 1mm, and final angle resolution of 2mrad: momentum can be reconstructed with **resolution 1/2000** using calculated inverse **transfer maps** (determined to 5th order or higher with COSY) and accurate description of the fields of the magnets.

Summary of measured and extracted quantities:

Velocity (from TOF), Energy loss (from IC), Total Energy (IC+Si wall)Mass-to-charge ratio: A/Q $B \rho \sim A/Q \times v$ $Z \sim v \Delta E^{1/2}$ Atomic Number Z $Z \sim$ Q \sim f(E, v, B ρ) Ionic charge Q \times A/Q Mass number \overline{A}

Complete Identification of heavy residues in Z,Q,A,υ, θ_r

Residue yield distributios in Z,A,υ **and** θ**r can be obtained**

Layout of "LAS" + Gamma and Charged Particle Arrays:

LAS : preliminary layout of experimental room:

The room dimensions are: \sim 10m x 15 m, arc is \sim 7m radius; angular range -20 to 120 degrees

Overview of "LAS" tasks (partial list) :

Detailed definition of the spectrograph specificationsDetailed design of the spectrograph according to these specificationsMagnets (superconducting ?)Detectors: need state of the art detector systems:tracking-MCP, MWPC/drift chamberssegmented IC large area (+high uniformity) Si detectors for Ε ("Si walls") Target chamber (s) Electronics, data acquisition

Representative results from recent cross section measurements of neutron-rich products at 15MeV/nucleon with ⁴⁰Ar and ⁸⁶Kr beams at Texas A&M with the MARS recoil separator:

MARS Recoil Separator and Setup for Heavy Rare Isotope Studies*

Neutron-Rich Rare Isotopes near and above the **Fe-Ni region**

CYCLOTRON NSTITUTE Texas A&M University

*G. A. Souliotis et al., in preparation

BigSol Setup for RIB production

Optics: object/image ~ 3 / 1

Results of BigSol test run: Charge State Distributions

Charge state distribution at PPAC2of 40Ar (15MeV/u) thru PPAC1(acting as a stripper).Angular acceptance: 3.0-4.0 deg.(set by the blocker system)

B ρ = 1.244 Tm, I_{BigSol}=81.6 A

$$
B \rho = 1.320
$$
 Tm, $I_{BigSol} = 86.6$ A

Results of BigSol Line tests: Rare Isotope Production

1731

867

35.63

32.03

hDE1E1 hDE1E1 **Entries** 796161 Example of nueutron-rich Mean x 1200 "Elastics"Mean y fragment production :**RMS x** 1100 RMS_y $\rm ^{40}Ar(15MeV/u)+$ ⁶⁴Ni 1000 B ρ = 1.282 Tm, 900 800 $\rm I_{BigSol}$ =84.1 A ∆Ε700 Angular acceptance: 3.0-4.0 deg.600 500 **Fragments** 400 1000 1400 1600 1800 2000 2200 2400 1200 ZA first ZA first Ε**Entries** 3808 Mean x 36.64 Mean y 16.62 18 **RMS x** 2.247 Cl**RMS v** 0.9626 -1p+2n17 S 16 $-2p+2n$ PZ $15₁$ Si $14¹$ **38SCYCLOTRON** 13 **INSTITUTE** 12 42 **Texas A&M University** 30 32 34 36 38 40 A

BigSol Line Data: Rare Isotope Production

BigSol Line: analysis of test DIC data

Example of Z-E/A distribution of fragments from 136Xe (20 MeV/u) data:(∆Ε-Ε-TOF techniques, use of large area Si and PPACs) :

Acknowledgements:

Special thanks to:

Robert Janssens, Jerry Nolen, Ernst Rehm and Alan Wuosmaafor discussions and support of the LAS effort

Work on DIC at TAMU:

M. Veselsky, S. Galanopoulos, M. Jandel, A. Keksis, D.V. Shetty, B. Stein, S.J. Yennello

This work was supported in part by:The Department of Energy: Grant Number DE-FG03-93ER40773,

The Robert A. Welch Foundation: Grant Number A-1266

