

IRiS - Solenoid design

Working Group report J. Dvorak, B. Back, F. Becchetti

Jan Dvorak Helmholtz Institute Mainz

- Ion-optics of a solenoid
- Gas-filled solenoid separator
	- –Symmetric and asymmetric mode
- Vacuum solenoid separator
- To do in the future

- V \mathcal{L}_{X} L B \rightarrow Lorenz force (F = q * V_{X} x B)
	- In XY plane ion circular motion with cyclotron frequency
	- $-$ Along z travels with velocity v_z
- Spiral trajectory

Ion trajectory in solenoid

Helmholtz Institute Mainz

FRELMHOLTZ

• All ions are focused back to axis at focal length

● Maximal radius of ion trajectories

Helmholtz Institute Mainz

$$
R = 0.29 \frac{\sqrt{Em}}{Bq} \sin(\theta)
$$

Bq

 $\cos(\theta)$

 $F = 0.911 \frac{\sqrt{Em}}{R}$

- Solenoid works as focal length dispersive in mv/q with dependency on θ
- Different products at constant θ have different focal points \rightarrow separation

- Heavy ions have a distributions of charge states after recoiling from target
- In gas-filled separator charge state is averaged by collisions with gas molecules

Gas-filled solenoid

Helmholtz Institute Mainz

Solenoid filled with He at 1-10 mbar

Gas-filled solenoid 48Ca+248Cm @ 209 MeV

Helmholtz Institute Mainz

Symmetric mode

- 1.3 m long
- 40 cm bore i.d.
- 9.6 T
- 10 MJ stored energy
- 1 mbar He
- Target 1 mg/cm²

 \bullet $I_{\text{beam}} = 1 \text{ p. }\mu\text{A}$

FELMHOLTZ

Solenoid up to scale

Helmholtz Institute Mainz

Efficiency: 26.6 %

Efficiency= $0.03%$, Rate = $2.4*10*$ Hz

HELMHOLTZ

Efficiency: 0.005% for θ_{CM} > 80°, Rate: 770 Hz

Perfect beam suppression

- \bullet 27 % efficiency for $Z \ge 102$
- Background rate:
	- $-$ ~ 30 kHz

- mostly due to inelastic few-nucleon exchange channels
- Small number of elastic scattered target nuclei make it to the detector
- Background can be reduced by moving (or extending) of the beamdump and closing of collimator aperture

- 1) Middle collimator radius $13 \rightarrow 12$ cm
- 2) Beam dump 1 backwards by 5 cm

3) Beam dump 2 – radius $3.5 \rightarrow 5$ cm

- Reducing background from 30 kHz to 320 Hz (no elastic scattered target, GRAZING reduced)
- \bullet Z \geq 102 Efficiency dropped from 27% to 17%

Gas-filled solenoid 48Ca+248Cm @ 209 MeV

Helmholtz Institute Mainz

Asymmetric mode

- 1m long
	- 58 cm bore i.d.
	- 7.7 T
	- 10 MJ
	- 1 mbar He
	- \bullet $I_{beam} = 1 p. \mu A$
	- \bullet Focal distance = 1.5 m

- Asymmetric mode rocks
- Depends on the fringe field be careful!

Gas-filled solenoid ²³⁸U + ²⁴⁸Cm @ 750 MeV

Helmholtz Institute Mainz

Symmetric mode

- 1.3 m long
- 40 cm bore i.d.
- 9.6 T
- 10 MJ stored energy
- 10 mbar He
- Target 1 mg/cm²
- |
beam $= 1 p. \mu A$

(probably 20 x more than what is possible)

²³⁸U + ²⁴⁸Cm @ 750 MeV Gas cell -summary

Helmholtz Institute Mainz

HELMHOLTZ
| ASSOCIATION

G

- Moving beamdump back by 5 cm
- **Background reduced**
- Severe cut of efficiency

* Assuming target thickness of 1mg/cm² and I_{beam} = 1 puA

238U + 248Cm @ 750 MeV Gas cell

Helmholtz Institute Mainz

Asymmetric mode • 1m long

-
- 58 cm bore i.d.
- 7.7 T
- 10 MJ
- 10 mbar He
- \bullet $I_{beam} = 1 p. \mu A$
- \bullet Focal distance = 1.5 m

- Asymmetric is better than symmetric
- Depends on the fringe field be careful!

- Even with asymmetric mode is background a problem
- Tracks are almost impossible to disentangle

- Size and B-field can be scaled
- Optimal designs \sim 10 MJ stored energy
- NbTi can be used up to 9 T at 4.2 K, 10T significantly more expensive
- Estimated cost for NbTi solenid 1-1.2 M\$

Vacuum solenoid

Helmholtz Institute Mainz

Vacuum solenoid

HELMHOLTZ

ASSOCIATION

- 2 m long
- 60 cm bore i.d.
- 2.3 T
- 1.7 MJ stored energy
- Target 1 mg/cm²

- Large charge-state spread →
	- Impossible to reduce background

* Assuming target thickness of 1mg/cm² and I_{beam} = 1 puA

Separation in vacuum solenoid doesn't suffice

- Gas-filled solenoid design works, but
	- Solenoid with stored energy of 10 MJ necessary
	- $-$ Estimated cost \sim 1 M\$

* Assuming target thickness of 1mg/cm² and I_{beam} = 1 puA

- Double check the gas interaction
- Double check fringe field 1.8 m 1.059 m 0.422 m 3.134 m MWP – asymmetric mode **Beam Blocke** IC-8 **GPPAC** PPPAC **BigSol IPPAC**
- Consider thicker targets (at TAMU used 6.3 mg/cm2 Th)
- Consider optimization of solenoid bore size

Н. ● HEAVY ELEMENTS

Thank you for your attention!