





# IRiS - Solenoid design

Working Group report J. Dvorak, B. Back, F. Becchetti

Jan Dvorak Helmholtz Institute Mainz





- Ion-optics of a solenoid
- Gas-filled solenoid separator
  - -Symmetric and asymmetric mode
- Vacuum solenoid separator
- To do in the future





- $V_x \perp B \rightarrow \text{Lorenz force } (F = q * v_x \times B)$ 
  - In XY plane ion circular motion with cyclotron frequency
  - Along z travels with velocity v<sub>7</sub>
- Spiral trajectory



## Ion trajectory in solenoid

Helmholtz Institute Mainz

HELMHOLTZ



- All ions are focused back to axis at focal length
- $F = 0.911 \frac{\sqrt{Em}}{Bq} \cos(\theta)$  Maximal radius of ion trajectories

$$R = 0.29 \frac{\sqrt{Em}}{Bq} \sin\left(\theta\right)$$

- Solenoid works as focal length dispersive in mv/q with dependency on  $\theta$
- Different products at constant  $\theta$  have different focal points  $\rightarrow$  separation



- Heavy ions have a distributions of charge states after recoiling from target
- In gas-filled separator charge state is averaged
  by collisions with gas molecules





#### Gas-filled solenoid

Helmholtz Institute Mainz

# Solenoid filled with He at 1-10 mbar



## Gas-filled solenoid <sup>48</sup>Ca+<sup>248</sup>Cm @ 209 MeV

Helmholtz Institute Mainz

# Symmetric mode



- 1.3 m long
- 40 cm bore i.d.
- 9.6 T
- 10 MJ stored energy
- 1 mbar He

HELMHOLTZ

• Target 1 mg/cm<sup>2</sup>

 $I_{beam} = 1 p.\mu A$ 



#### Solenoid up to scale

Helmholtz Institute Mainz









## Efficiency: 26.6 %







## Efficiency= 0.03%, Rate = 2.4\*10<sup>4</sup> Hz





# Efficiency: 0.005% for $\theta_{CM} > 80^{\circ}$ , Rate: 770 Hz





| Min $\theta_{CM}$ [deg] | σ [barn] |
|-------------------------|----------|
| 80                      | 1.5      |
| 10                      | 180      |
| 1                       | 18000    |



## Perfect beam suppression





- 27 % efficiency for  $Z \ge 102$
- Background rate:
  - ~ 30 kHz

- mostly due to inelastic few-nucleon exchange channels
- Small number of elastic scattered target nuclei make it to the detector
- Background can be reduced by moving (or extending) of the beamdump and closing of collimator aperture



- 1) Middle collimator radius  $13 \rightarrow 12$  cm
- 2) Beam dump 1 backwards by 5 cm
- 3) Beam dump 2 radius  $3.5 \rightarrow 5 \text{ cm}$





- Reducing background from 30 kHz to 320 Hz (no elastic scattered target, GRAZING reduced)
- $Z \ge 102$  Efficiency dropped from 27% to 17%





## Gas-filled solenoid <sup>48</sup>Ca+<sup>248</sup>Cm @ 209 MeV

Helmholtz Institute Mainz

# Asymmetric mode



- Im long
  - 58 cm bore i.d.
  - 7.7 T
  - 10 MJ
  - 1 mbar He
  - $I_{beam} = 1 p.\mu A$
  - Focal distance = 1.5 m



Asymmetric mode rocks

• Depends on the fringe field – be careful!

| Туре                 | Efficiency       | Count Rate |
|----------------------|------------------|------------|
| Elastic target > 80° | < 0.003%         | < 0.4 kHz  |
| Grazing collisions   | 0.03%            | 20 kHz     |
| Z ≥ 102              | <mark>41%</mark> |            |



### Gas-filled solenoid <sup>238</sup>U + <sup>248</sup>Cm @ 750 MeV

Helmholtz Institute Mainz

# Symmetric mode



- 1.3 m long
- 40 cm bore i.d.
- 9.6 T
- 10 MJ stored energy
- 10 mbar He
- Target 1 mg/cm<sup>2</sup>
- I = 1 p.µA (probably 20 x more than what
  - is possible)

## <sup>238</sup>U + <sup>248</sup>Cm @ 750 MeV Gas cell -summary

Helmholtz Institute Mainz

HELMHOLTZ | ASSOCIATION

F

| Туре                 | Efficiency       | Count Rate |
|----------------------|------------------|------------|
| Elastic target > 80° | 0.1%             | 58 kHz     |
| All events b<18 fm   | 0.03%            | 52 kHz     |
| Z ≥ 102              | <mark>19%</mark> |            |
|                      |                  |            |

![](_page_20_Picture_0.jpeg)

- Moving beamdump back by 5 cm
- Background reduced
- Severe cut of efficiency

| Туре                 | Efficiency | Count Rate* |
|----------------------|------------|-------------|
| Elastic target > 80° | 0.001%     | 700 Hz      |
| Primary b<18 fm      | 0.001%     | 2 kHz       |
| Z ≥ 102              | 3%         |             |

![](_page_20_Figure_6.jpeg)

\* Assuming target thickness of 1mg/cm<sup>2</sup> and  $I_{beam}$  = 1 pµA

![](_page_21_Picture_0.jpeg)

#### <sup>238</sup>U + <sup>248</sup>Cm @ 750 MeV Gas cell

Helmholtz Institute Mainz

# Asymmetric mode • 1m long

![](_page_21_Picture_4.jpeg)

- 58 cm bore i.d.
- 7.7 T
- 10 MJ
- 10 mbar He
- $I_{\text{beam}} = 1 \text{ p.}\mu\text{A}$
- Focal distance = 1.5 m

![](_page_22_Picture_0.jpeg)

- Asymmetric is better than symmetric
- Depends on the fringe field be careful!

| Туре                 | Efficiency        | Count Rate |
|----------------------|-------------------|------------|
| Elastic target > 80° | 0.5 %             | 300 kHz    |
| Primary B < 18 fm    | 0.2 %             | 300 kHz    |
| Z ≥ 102              | <mark>29 %</mark> |            |

![](_page_23_Picture_0.jpeg)

- Even with asymmetric mode is background a problem
- Tracks are almost impossible to disentangle

![](_page_23_Picture_3.jpeg)

![](_page_24_Picture_0.jpeg)

## Scaling of the magnet in symmetric mode

- Size and B-field can be scaled
- Optimal designs ~ 10 MJ stored energy
- NbTi can be used up to 9 T at 4.2 K, 10T significantly more expensive
- Estimated cost for NbTi solenid 1-1.2 M\$

| Length [m] | Bore i.d.<br>[cm] | Max B field<br>[T] | Stored<br>Energy [MJ] | Efficiency for<br><sup>238</sup> U+ <sup>248</sup> Cm |
|------------|-------------------|--------------------|-----------------------|-------------------------------------------------------|
| 1.3        | 40                | 9.6                | 10                    | 19%                                                   |
| 2          | 56                | 6                  | 9.8                   | 19.5%                                                 |
| 3          | 70                | 4                  | 9.6                   | 19 %                                                  |

![](_page_25_Picture_0.jpeg)

#### Vacuum solenoid

Helmholtz Institute Mainz

# Vacuum solenoid

HELMHOLTZ

ASSOCIATION

![](_page_26_Figure_2.jpeg)

- 2 m long
- 60 cm bore i.d.
- 2.3 T
- 1.7 MJ stored energy
- Target 1 mg/cm<sup>2</sup>

![](_page_27_Picture_0.jpeg)

• Large charge-state spread  $\rightarrow$ 

- Impossible to reduce background

| Туре                     | Efficiency | Count Rate |
|--------------------------|------------|------------|
| Elastic projectile > 10° | 1.0 %      | 280 MHz    |
| Elastic target > 80°     | 4.3 %      | 1 MHz      |
| Grazing                  | 0.6 %      | 0.5 MHz    |
| Z ≥ 102                  | 14 %       |            |

\* Assuming target thickness of  $1mg/cm^2$  and  $I_{beam} = 1 p\mu A$ 

![](_page_28_Picture_0.jpeg)

#### Separation in vacuum solenoid doesn't suffice

- Gas-filled solenoid design works, but
  - Solenoid with stored energy of 10 MJ necessary
  - Estimated cost ~ 1 M\$

| Reaction                             | Design type | Efficiency $Z \ge 102$ | Count rate* |
|--------------------------------------|-------------|------------------------|-------------|
| <sup>48</sup> Ca + <sup>248</sup> Cm | Gas Cell    | 27 %                   | 30 kHz      |
| <sup>48</sup> Ca + <sup>248</sup> Cm | FPD         | 17 %                   | 320 Hz      |
| <sup>48</sup> Ca + <sup>248</sup> Cm | Asymmetric  | 41 %                   | 20 kHz      |
| <sup>238</sup> U + <sup>248</sup> Cm | Gas Cell    | 19 %                   | 11 kHz      |
| <sup>238</sup> U + <sup>248</sup> Cm | FPD         | 3 %                    | 2 kHz       |
| <sup>238</sup> U + <sup>248</sup> Cm | Asymmetric  | 29 %                   | 600 kHz     |

\* Assuming target thickness of 1mg/cm<sup>2</sup> and  $I_{beam}$  = 1 pµA

![](_page_29_Picture_0.jpeg)

- Double check the gas interaction
- Double check fringe field
   asymmetric mode
  Beam
  BigSol
  PPPAC
  BigSol
  PPAC
  BigSol</l
- Consider thicker targets (at TAMU used 6.3 mg/cm<sup>2</sup> Th)
- Consider optimization of solenoid bore size

![](_page_29_Figure_5.jpeg)

# H E HEAVY ELEMENTS

Thank you for your attention!