

Reaction Properties

Working Group report J. Dvorak, H. Gäggeler, D. Hild, J. Kratz, G. Pollarolo, M. Schädel, G. Souliotis, and A. Türler

Jan Dvorak Helmholtz Institute Mainz

- Design Reactions
- Reaction channels:
 - -Elastic scattering
 - -Quasi-elastic and few-nucleon transfer channels
 - -Multi-nucleon transfer channels
 - -Fusion
- Preparatory experiment

Design reactions chosen at IRiS 10 (Spring) workshop:

- -Various projectiles + Actinide targets
- $-^{136}$ Xe + 208 Pb
- -Energy < 10 % above the Coulomb Barrier

Reaction	E _{LAB} [MeV]	
²² Ne + ²³⁸ U	125	
⁴⁰ Ar + ²³⁸ U	228	
⁴⁸ Ca + ²³⁸ U	255	
¹³⁶ Xe + ²³⁸ U	799	
²³⁸ U + ²³⁸ U	1606	
¹³⁶ Xe + ²⁰⁸ Pb	789	

Classification of collisions

Helmholtz Institute Mainz

HELMHOLTZ

ASSOCIATION

Loveland, W. D.; Morrissey, D. & Seaborg, G. T. Modern Nuclear Chemistry

Elastic scattering

Helmholtz Institute Mainz

HELMHOLTZ

ASSOCIATION

Figure 10.13 Diagram showing some representative projectile orbits for the interaction of 130 MeV ¹⁶O with ²⁰⁸Pb. [From Satchler (1990).]

Loveland, W. D.; Morrissey, D. & Seaborg, G. T. Modern Nuclear Chemistry

• Up to θ_{q} Rutherford cross section

$$\frac{d\sigma}{d\Omega} = \frac{dI}{I_0} \frac{1}{d\Omega} = \left(\frac{d_0}{4}\right)^2 \frac{1}{\sin^4(\theta/2)} = \left(\frac{Z_1 Z_2 e^2}{4T_{\rm P}^{\rm cm}}\right)^2 \frac{1}{\sin^4(\theta/2)}$$

$$\theta_{gr} = 2 \operatorname{asin} \left(\frac{V_C}{2 E_{CM} - V_C} \right) \qquad \frac{\mathrm{d}\sigma_{et}}{\mathrm{d}\sigma_C} \qquad quantal \qquad classical \\ \mathbf{E}_{CM} = 1.1 \mathbf{V}_C \rightarrow \theta_{gr} = 110^{\circ} \\ \text{Below that } \sigma_{el} \operatorname{drops} \qquad 0.25$$

(-)

(-)

'ar

R. Bass, Nuclear Reactions With Heavy Elements

HELMHOLTZ

⁴⁸Ca + ²⁴⁸Cm @ 209 MeV CM (1.07 V_c)

²³⁸U + ²⁴⁸Cm @ 750 MeV CM (~ V_C)

Inelastic collisions

Helmholtz Institute Mainz

⁸⁶Kr+¹⁶⁶Er at 8.18 MeV/u

Gobbi, Nuclear Physics A, 1981, 354, 337 - 374

Inelastic collisions – angular distribution

Helmholtz Institute Mainz

HELMHOLTZ

ASSOCIATION

Behavior scales with "modified Sommerfeld parameter" n'

$$\eta' = \frac{Z_1 \cdot Z_2 \cdot e^2}{\hbar \cdot v_B}$$

 V_{R} - relative velocity at interaction barrier

a) Orbiting η' < 150
b) Focusing 250 < η' < 400
c) Coulomb trajectory 500 < η'

Angular distribution for design reactions

Helmholtz Institute Mainz

Reaction	E _{LAB} [MeV]	η'	Туре
²² Ne + ²³⁸ U	125	200	Focusing
⁴⁰ Ar + ²³⁸ U	228	357	Focusing
⁴⁸ Ca + ²³⁸ U	255	418	Focusing
¹³⁶ Xe + ²³⁸ U	799	1071	Coulomb
²³⁸ U + ²³⁸ U	1606	1700	Coulomb
¹³⁶ Xe + ²⁰⁸ Pb	789	802	Coulomb

⁴⁸Ca and ²³⁸U + ²³⁸U (²⁴⁸Cm) are representative reactions

HELMHOLTZ

ASSOCIATION

Gobbi, Nuclear Physics A, 1981, 354, 337 - 374

- Deep-inelastic reactions are complex
- Luckily we have GRAZING
 - coupled channels calculations ***
 - G. Polarollo

• See his presentation from the last IRiS workshop

http://www-win.gsi.de/iris10/contributions/IRiS10_contribution_Pollarolo.pdf

http://personalpages.to.infn.it/~nanni/grazing/

- $d\sigma/(dE.d\theta)$ for different exit channels
- Reliable for quasi-elastic and few-nucleon transfer channels
 - The strongest channels

• Two detailed theoretical calculations:

-⁴⁸Ca + ²⁴⁸Cm @ 209 MeV CM (1.07 V_c) by Adamian and Antonenko

- ²³⁸U + ²⁴⁸Cm @ 750 MeV CM (~ V_c) by V. Zagrebaev

- Calculated by Adamian and Antonenko
 - Diffusion of dinuclear system in the charge and mass asymmetry coordinates
 - Long contact times \rightarrow isotropic angular distribution
 - Excitation energy of the system shared between fragments by their mass

Ref e.g.: Adamian, G. G., Antonenko, N. V., Sargsyan, V. V. & Scheid, W., Phys. Rev. C, 2010, 81, 024604

Cross sections for 48Ca+248Cm at 209 MeV LAB - Secondary even-odd products

- Calculation by V. Zagrebaev
 - Dynamical model based on Langevin-type dynamical equations of motion
 - Promising results presented at the last IRiS workshop

http://www-win.gsi.de/iris10/contributions/IRiS10_contribution_Zagrebaev.pdf

- Meanwhile new calculations

HELMHOLTZ

Chart of Nuclides

Helmholtz Institute Mainz

- Design Reactions concentrate on ⁴⁸Ca,²³⁸U + ²⁴⁸Cm
- Reaction kinematics
 - Reaction channels:
 - Elastic scattering
 - Quasi-elastic and few-nucleon transfer channels GRAZING
 - Multi-nucleon transfer channels Calculations by experts
 - -Fusion especially fusion-fission
 - Preparatory experiments

Fusion-fission

Helmholtz Institute Mainz

- Fusion-fission reactions with lighter projectiles
- Rather simple (comparing to other channels)
- Experimental data exist

Itkis at al., Fusion-fission of Superheavy Nuclei,

J. of Nuclear and Radiochemical Sciences, 2002, 3, 57-61

- Angular distribution of SHE fragments
 - The biggest unknown

- Critical for separator simulations
- Experimental data missing
- A simple radiochemical experiment would help

H E HEAVY ELEMENTS

Thank you for your attention!

2 body kinematics

http://nrv.jinr.ru/nrv/webnrv/kinematics/two_body.php

 $\Theta_{IAR}(^{260}No) < 32^{\circ}, 8.7 < E_{IAR}(^{260}No) < 90 \text{ MeV}$

 $^{\rm 238}\text{U}\text{+}^{\rm 238}\text{U} \rightarrow ^{\rm 216}\text{Pb}\text{+}^{\rm 260}\text{No} \text{ at } 1606 \text{ MeV LAB}$

 Θ_{LAB} (²⁶⁰No) < 65°, 3.9 < E_{LAB} (²⁶⁰No) < 1594 MeV