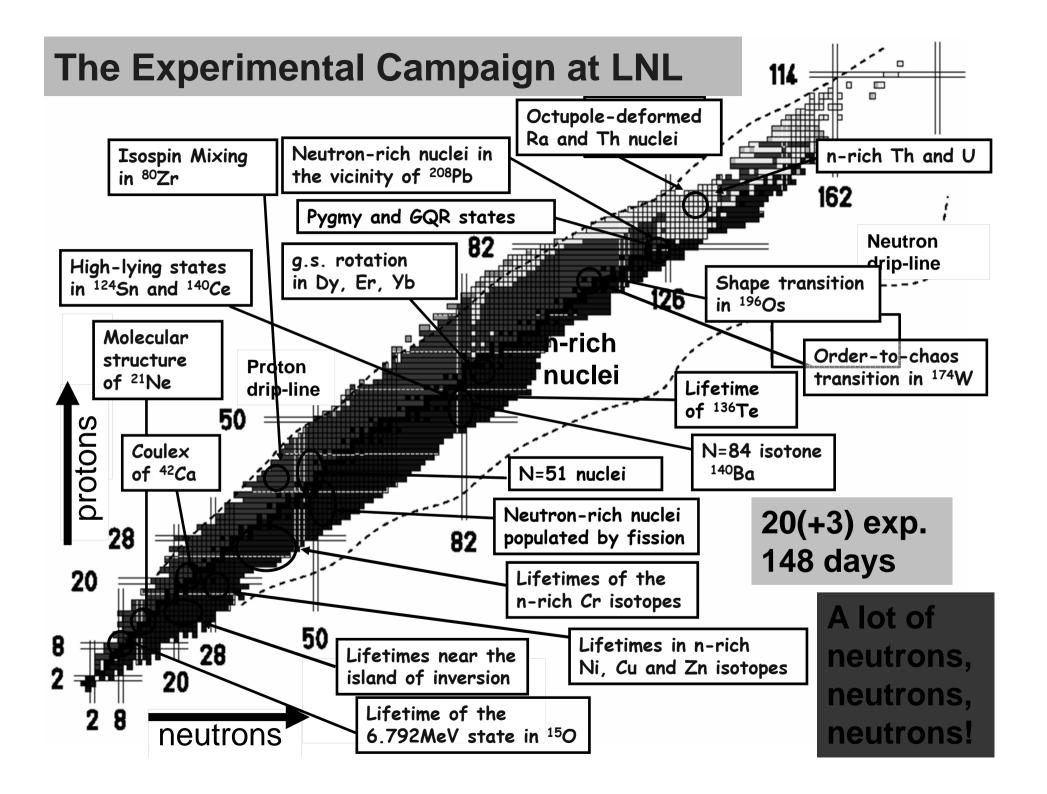
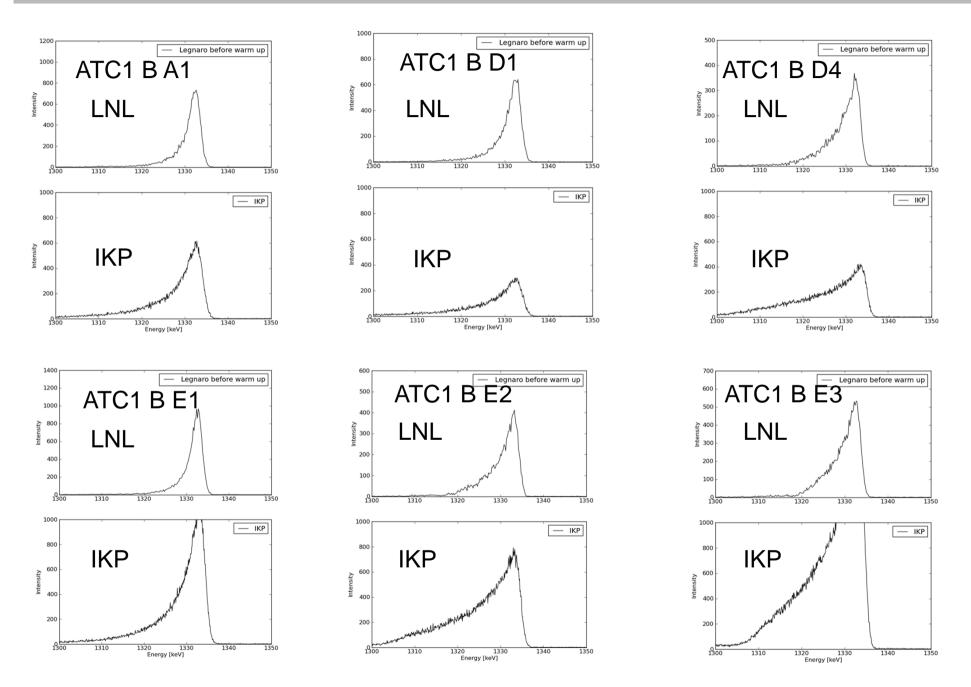
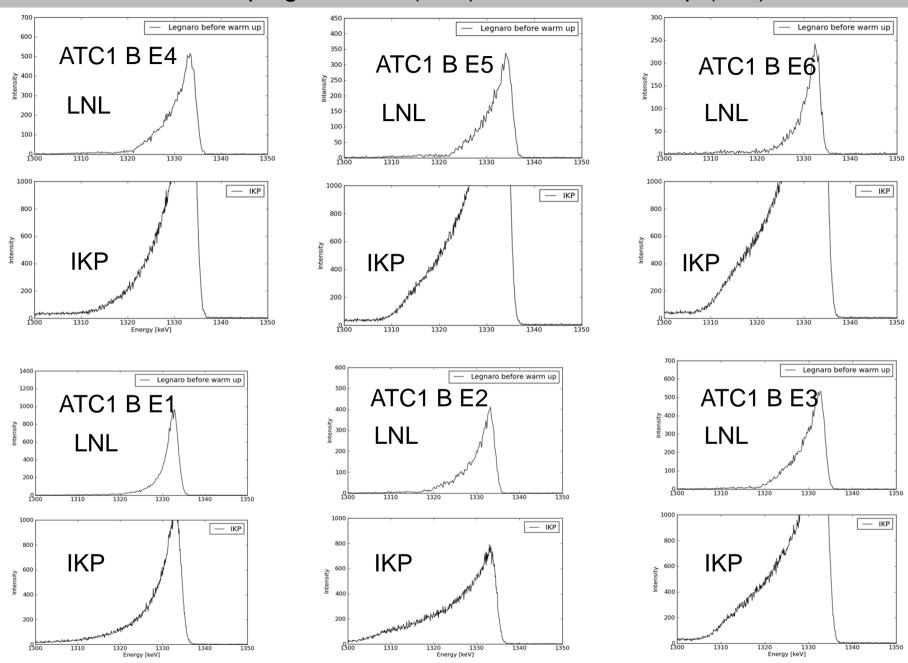
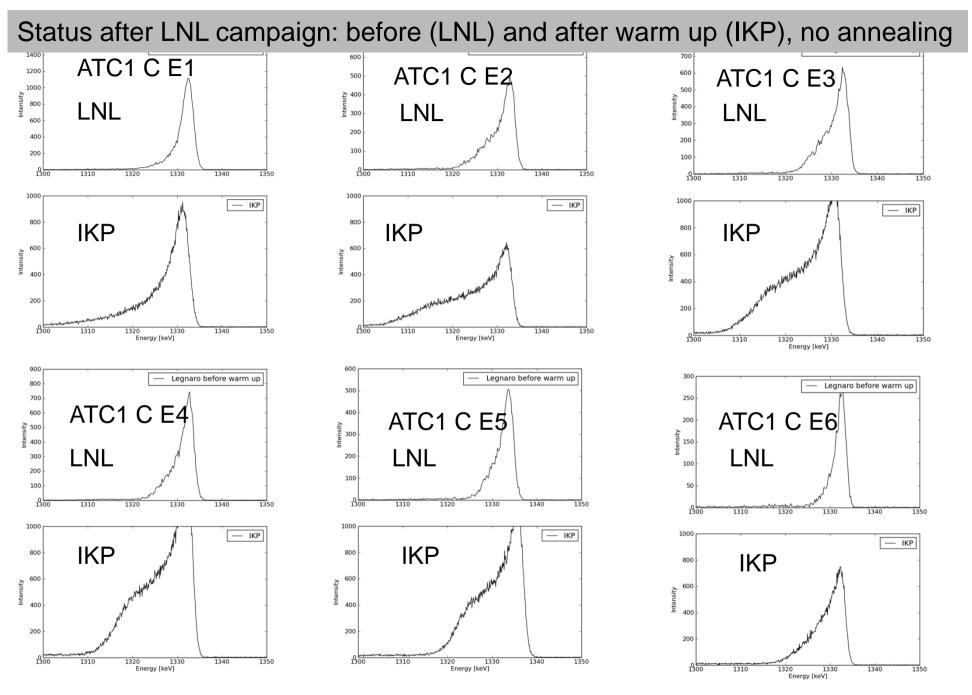

AGATA detectors summary report



Peter Reiter for the AGATA detector working group


12th AGATA week 11-13 June 2012 GSI Darmstadt, Germany



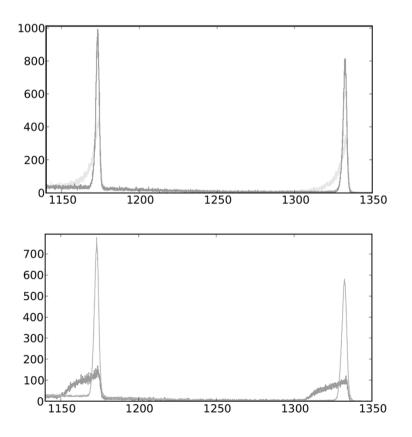


Status after LNL campaign: before (LNL) and after warm up (IKP), no annealing

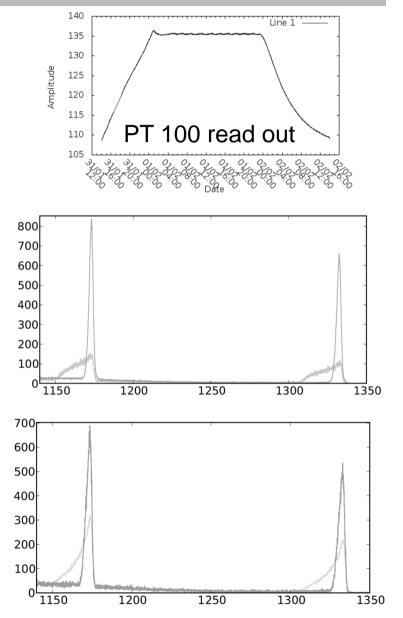
Status after LNL campaign: before (LNL) and after warm up (IKP), no annealing

It's difficult to determine the FWHM due to the peak shapes, varies between 5 and 20 keV.

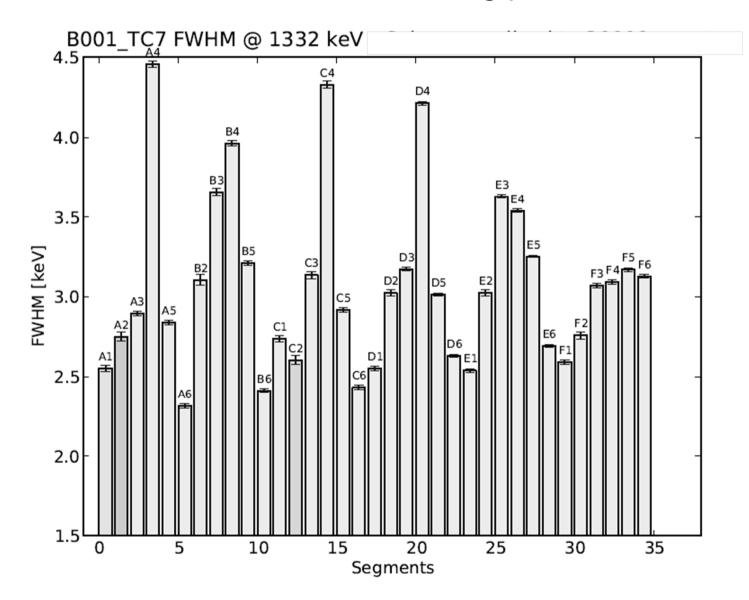
Disassembly and Reassembly of five AGATA Triple Cryostat @ IKP


integration of 111 high resolution spectroscopy channels
cold FET technology for all signals

- mechanical precision

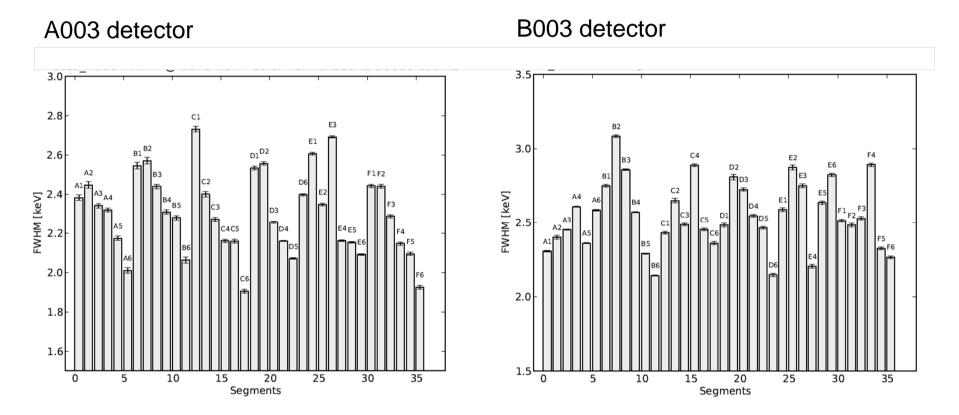

- heat development
- LN2 consumption
- microphonics
- noise, high frequencies

J. Eberth, A. Wiens, IKP Köln H.-G. Thomas, CTT



24 hours annealing of ATC 1 detectors

Energy resolution after 24 hours of ATC 1 B001 detector Conclusion: insufficient annealing period

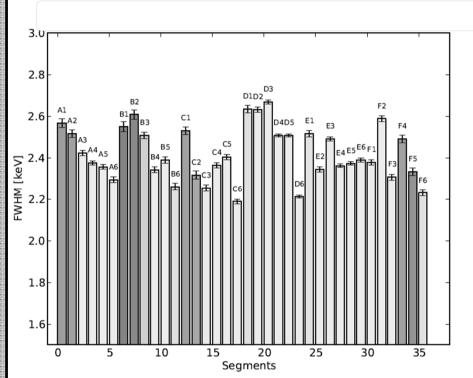

Test of ATC2 with A003, B003, C005 after 96 hours annealing period

A00)3, HV	=450	0V Co	re re	solutio	n at 5	9.6ke\	/: 1.5	3keV,	at 6	60Co: 2.43keV
Seg	gment r	esoli	ution a	t 59.6	keV in	keV:					
A1	1.16	B1	1.11	C1	1.11	D1	1.14	E1	1.19	F1	1.15
A2	1.00	B2	0.99	C2	1.04	D2	1.03	E2	1.04	F2	1.14
A3	0.97	B3	1.02	C3	1.08	D3	1.16	E3	1.09	F3	0.95
A4	1.12	B4	1.08	C4	1.31	D4	1.24	E4	1.20	F4	1.13
A5	1.10	B5	1.16	C5	1.06	D5	1.35	E5	1.20	F5	1.21
A6	0.99	B6	0.97	C6	0.97	D6	1.03	E6	1.05	F6	1.09

BOC)3, HV	′=450	0V Co	re res	solutio	n at 5	9.6ke\	/: 1.5	51keV,	at	60Co: 2.37	∕keV
Seg	gment i	esolu	ution a	t 59.6	ikeV in	keV:						
A1	1.11	B1	1.18	C1	1.05	D1	1.12	E1	1.11	F1	1.05	
A2	0.98	B2	1.08	C2	0.94	D2	0.98	E2	0.94	F2	0.94	
A3	1.04	B3	1.07	C3	1.00	D3	1.02	E3	0.96	F3	1.02	
A4	0.99	B4	1.10	C4	1.06	D4	1.08	E4	1.06	F4	1.02	
A5	1.09	B5	1.08	C5	1.01	D5	1.03	E5	1.10	F5	1.07	
A6	0.97	B6	0.93	C6	0.93	D6	0.97	E6	0.97	F6	1.05	

C00	D5, H\	/=400	00V Co	ore re	solutio	n at 5	9.6ke∖	/: 1.4	l6keV,	at	60Co: 2.36keV	1
Seg	gment r	esolu	ution at	t 59.6	keV in	keV:						
A1	1.08	B1	1.01	C1	1.05	D1	1.10	E1	1.10	F1	1.05	
A2	1.01	B2	0.91	C2	0.93	D2	0.95	E2	0.95	F2	0.94	
A3	1.00	B3	0.97	C3	0.94	D3	0.97	E3	1.02	F3	0.94	
A4	1.19	B4	1.24	C4	1.30	D4	1.03	E4	1.36	F4	0.90	
A5	1.00	B5	1.03	C5	1.07	D5	1.10	E5	1.00	F5	1.05	
A6	1.07	B6	0.93	C6	0.96	D6	1.00	E6	1.16	F6	3.20	

4 days annealing: energy resolution ATC 2


Energy resolution of ATC 2 at 1.3 MeV after 96 hours annealing

Conclusion: improved resolution, but is annealing period sufficient?

5 days annealing: energy resolution ATC 4

Seg.	59,5keV	Seg.	59,5keV
A1	1,18	D1	1,22
A2	1,22	D2	1,05
A3	1,09	D3	1,05
A4	1,10	D4	1,07
A5	1,07	D5	1,30
A6	1,03	D6	1,05
B1	1,13	E1	1,29
B2	1,08	E2	1,00
B3	1,07	E3	1,04
B4	1,12	E4	1,12
B5	1,12	E5	1,21
B6	1,19	E6	1,10
C1	1,19	F1	1,21
C2	1,11	F2	1,08
C3	1,13	F3	1,11
C4	1,18	F4	1,07
C5	1,19	F5	0,96
C6	1,00	F6	0,98

at 60Co: 2.27keV

- Energy resolution at 1.3 MeV clearly reduced with respect to new detector (next page)
- -Even 120 hours of annealing do not recover neutron damage!

Energy resolution of new A001 detector

Segment resolution [keV] at 59.6 keV:

	А	В	С	D	Е	F
1	1,21	1,13	1,12	1,15	1,15	1,16
2	0,98	1,14	0,98	0,97	1,04	1,04
3	1,06	1,10	1,07	0,98	1,09	1,06
4	0,99	1,18	1,13	1,03	1,09	1,11
5	0,94	1,05	1,18	1,14	1,16	1,12
6	0,92	1,07	1,10	1,07	1,05	1,10

Segment resolution [keV] at 1332.5 keV:

	A	В	С	D	Е	F
1	2,35	2,35	2,34	2,34	2,35	2,37
2	2,03	2,02	1,88	1,91	1,95	2,33
3	2,20	2,22	1,94	1,91	2,09	1,96
4	1,96	2,20	2,01	2,15	2,01	2,02
5	1,88	2,05	2,16	2,05	2,03	2,24
6	1,96	1,96	2,00	2,01	2,07	2,01

AGATA – status of detectors

Working detectors delivered in cluster cryostats to GSI:

ATC1:	A008, B001, C003	was at GSI, now IKP Cologne 16.5.12
ATC2:	A003, B003, C005	at GSI
ATC3:	A002, B010, C001	at GSI
ADC1:	B008, C006	at GSI
ADC2:	B012, C010	at GSI

ADC3: B011, C008 at IKP, ready for GSI

Working detectors available at IKP:

A001, A004, A006 B002, B004

missing C-type detectors, assembly of cluster detectors is stopped, waiting for C009

Detectors being tested (CAT):

A007 (Liverpool) C009 (Saclay)

20 detectors are available 2 CAT results pending

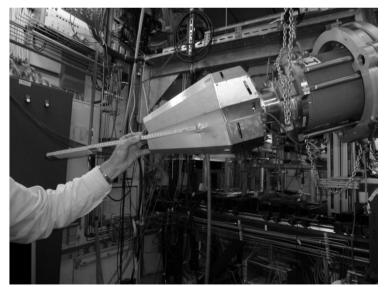
ATC 1 accident at GSI

28. March 2012, ATC 1 at GSI:

 Core RED:
 1.41 keV
 2.41 keV

 Core GREEN:
 1.38 keV
 2.42 keV

 Core BLUE:
 1.35 keV
 2.45 keV


selected segments at ⁶⁰Co energies:

	RED	GREEN	BLUE
	Row B	Row C	Row D
1	2.12/2.40	3.26/3.24	3.09/3.20
2	2.00/2.11	2.95/3.25	2.98/3.24
3	2.20/2.27	3.17/3.37	2.89/3.20
4	2.15/2.29	3.22/3.10	2.57/2.78
5	2.32/2.43	3.10/2.84	2.50/2.72
6	2.04/2.24	2.80/2.79	2.26/2.32

- ATC1 is affected by mechanical damage.
- Three detectors were tested at IKP after accident to be within specs.
- Reassembly is ongoing with new end cap

10. May 2012, ATC 1 at GSI:

AGATA – status of detectors

Detectors with leakage current stored at IKP:

A005 (leakage current at LNL after warm-up to room temperature)

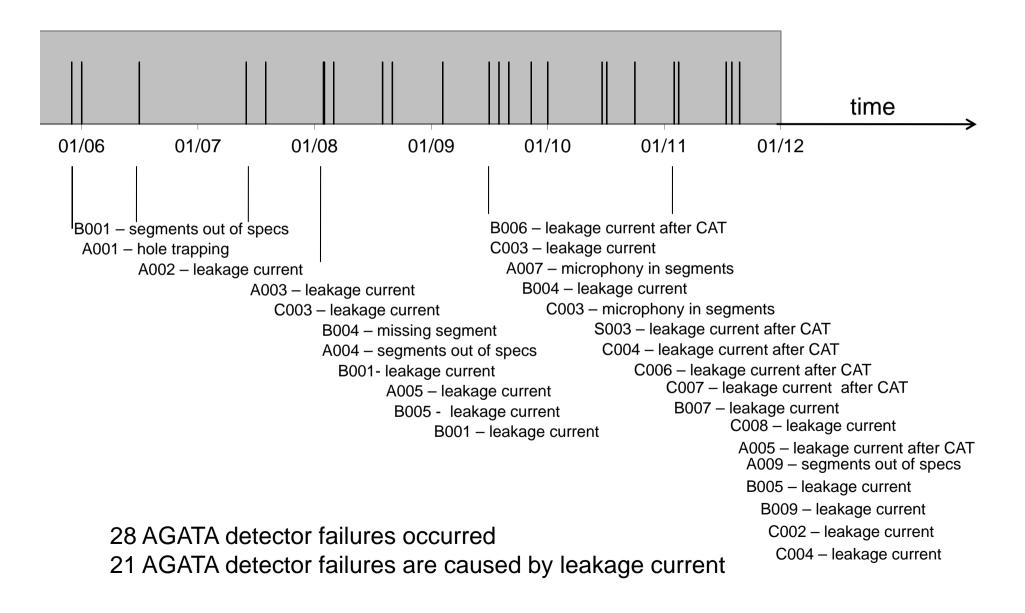
B005 (leakage current after annealing)

B009 (leakage current of segm. A1 at LNL, increased current of A1 after annealing)

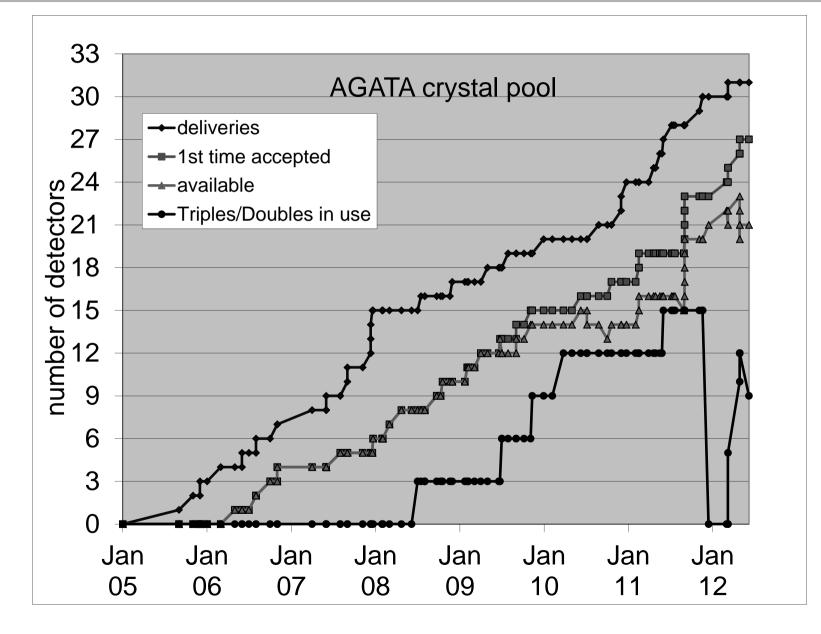
C002 (leakage current at LNL of segm. A5, leakage current of D6 after annealing

C004 (leakage current of segm. B4 after annealing)

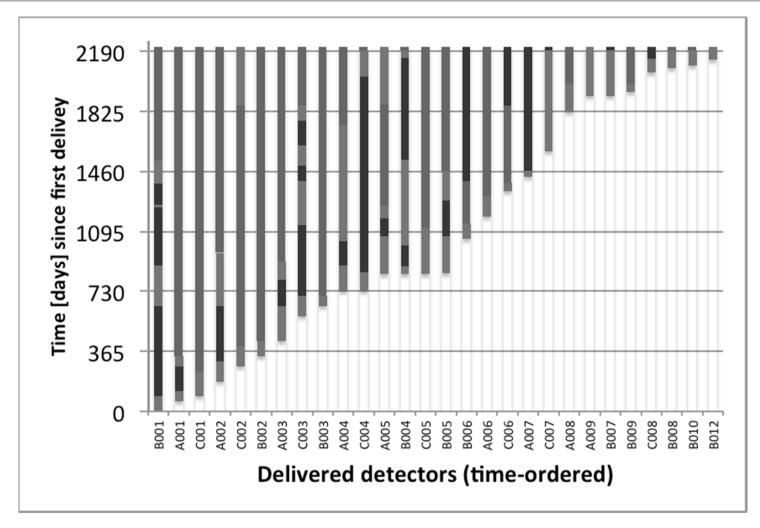
Detectors being repaired at Canberra:


A009	B006	B007	C007
Returned for repair Feb. 2012 Diagnostic planned for June Delivery scheduled late June 201	Returned for repair Jul 2009 Delivery scheduled Nov 2011 2Delivery re-scheduled April 2012 Failed May 2012 Delivery re-scheduled July 2012 (repair time >3 years)	Returned for repair April. 2011 Delivery scheduled March 2012 Delivery re-scheduled June 2012 (repair time >14 months)	Returned for Repair Sep. 2011 Delivery scheduled Jan 2012 Delivery re-scheduled April 2012 Delivery re-scheduled May 2012 Delivery re-scheduled July 2012 (repair time >10 months)

Detectors to be delivered by Canberra:


B013

Due since end 2011 Delivery scheduled Nov 2011 Failed May 2012 Delivery re-scheduled early July 2012 9 detectors are broken1 new detector pending


Crystals & Failures

AGATA crystals - evolution

Repair time

•CAT periods (purple), repair time periods (blue), operation time (green).

- •Time line starts with detector B001 in September 2005 and ends in September 2011.
- •Did not improve during last months.

AGATA crystals - overview

31 detectors were **delivered**:

A001,A002,A003,A004,A005,A006,A007,A008,A009 B001,B002,B003,B004,B005,B006,B007,B008,B009,B010,B011,B012 C001,C002,C003,C004,C005,C006,C007,C008,C009,C010

> <u>Colorcode:</u> Working broken CAT pending

Usage of the available detectors:

A008,	A003	A002	A001	A004	A008,						
в001,	в003	B010	в002	в004			B008	B012	B011	B012	
C003,	C005	C001					C006	C010	C008		
ATC1	ATC2	ATC3	ATC4	ATC5	ATC6	ATC7	ADC1	ADC2	ADC3	ADC4	ADC5

Efficiency is limited by available C-type detectors.

hang loose

Summary Conclusions

Annealing Available detectors Future perspectives