

PSA via Singular Value Decomposition

Tobias Habermann

AGATA PSA

Pulse shape comparison with X² threshold

SVD & Principal component analysis

Fast pulse shape comparison

Next steps

PSA

Position of gamma interaction

Pusle shape (hit segment and direct neighbours)

PSA via reference signals

1. build database of signals for know positions

2. find best fit to reference signal to determine position

 \rightarrow e.g. Adaptive Grid Search

Pulse Shape Analysis in AGATA

Core of the program

- Just a sequence of loops with almost no calculations
- Runs fast because all structures fit in memory

```
#define RERRE 24
#define RPHI 25
#define RZETA 60
#define RTIME 70
#define RSEGM 25
int amplitude[RERRE][RPHI][RZETA][RTIME][RSEGM]; //erre phi zeta time segment
                                                                                          252 MByte
chi2min-1000000000;
for (ierre-4;ierre<-RERRE;ierre+-step1A) {
  for(iphi=1:(iphi <=2+ierre)&&(iphi<=RPHI) ;iphi+=step1A){</pre>
    for(izeta=zetar[slice][0];izeta<=zetar[slice][1];izeta+=step1A) {</pre>
      for(dt=-rt;dt<=rt;dt++) {
        for(itime=10, chi2=0; (itime<=RTIME=10) && (chi2<chi2min); itime==step1B){</pre>
          for(kk-1; (kk<-segments[slice][0]) ;kk++){</pre>
             iseqm=seqments[slice][kk];
             aa=samples[itime-3+dt][isegm-1];
            bb=amplitude[ierre-1][iphi-1][izeta-1][itime-1][isegm-1];
             if (isecm--ref)
               chi2 += (long) (metrica[aa-bb+5000]/weights[mult-1]);
             clsc
               chi2 += metrica[aa-bb+5000];
        if(chi2<chi2min) {
          chi2min = chi2;
          erreb = ierre;
                                                                      * R. Venturelli presentations at AGATA weeks (e.g.
          phib
                  = 1ph1;
                                                                      Liverpool June 2006) available at at http://www-
          zetab - izeta;
          bestdt - dt:
                                                                      win.gsi.de/agata/
      3
                                                                      ** R. Venturelli, et al., LNL Annual Report 2002,
    }
                                                                      INFN-LNL(REP)198/2003, pp. 154-156
```

Pulse Shape Analysis in AGATA

Core of the program

- Just a sequence of loops with almost no calculations
- Runs fast because all structures fit in memory

Pulse Shape Comparison with X² threshold

number of reference signals that can be rejected after comparing x bins

SVD

method

SVD :

- reduces the size of the signals
- keeping the max. information
- improving the conditioning
- out-of line calculations

- \Rightarrow reduces the CPU time
- \Rightarrow no resolution loss
- \Rightarrow improve resol. and decomposition power

Principal Component Analysis

Transform dataset to have maximum information in minimum number of components.

New basis is obtained from singular value decomposition of the set of reference signals (singular vectors).

Singular vectors – Principal components

Fast Pulse shape comparison

OFFLINE

- 1. Singular value decomposition of signal basis → singular vectors / principal components
- 2. Transform signal basis

ONLINE

- 1. Transform measured pulse shape
- 2. Use Adaptive Grid Search
 - ... but compare the transformed pulse shapes

OFFLINE

- 1. Singular value decomposition of signal basis \rightarrow singular vectors / principal components
- 2. Transform signal basis

ONLINE

- 1. Transform measured pulse shape
- 2. Use Adaptive Grid Search ... but compare the transformed pulse shapes

- Apply SVD on AGATA signal basis
- Implement Fast Pulse Shape Comparison for NARVAL

Wavelet vs KLT/Singular value decomposition

→ Karhunen-Loeve-Transform is optimal linear filter for linear approximation

Results

Many basis signals can be rejected already with one coefficient. Already two coefficients result in a good approximation of x2.