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OUTLINE

●  1. The quest for hydrodynamics in systems that are small.

●  2. Cold atom gases as a probe of hydrodynamics. 

●  3. Elliptic flow as a function of particle number.

●  4. Experiment.

●  5. Preliminary results.

●  Conclusion.
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1. 
The quest for hydrodynamics in systems that are small.
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Examples relevant nuclear / cold atom physics:

Emergent phenomena are among the most interesting in Nature.

Nuclear deformations Superconductivity
quark-gluon plasma

“More is different”, [P. Anderson, 1972]

https://en.wikipedia.org/wiki/Emergence

Superfluidity

color glass
condensateR=V/I=0

η=0
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Focus of this talk: Hydrodynamics, a prime example of emergent (macroscopic) behavior.

Emergence in a particle system via collisions (kinetic theory).

Emergence of superfluid motion in BEC (no collisions, but due to interactions in a Fermi gas).

Both situations require a mascroscopic scenario, i.e., very large particle numbers.

Frontier: behavior of mesoscopic systems?  What if the particle number is small? 

[from S. Stringari,
Lectures at Collège de France (2004/2005)]

pressure
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Tool to probe hydrodynamic behavior: Elliptic flow. Shape inversion of the gas due to 
asymmetry in pressure-gradient force.

t=0 t=1ms

Realistic application: ideal Fermi gas in 2D at zero temperature.

[Ollitrault, PRD 46 (1992) 229-245

Does not really matter whether system is superfluid or collisional.

Mass density for
10 atoms (6Li)
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  Provides convincing evidence that the QGP behaves like a strongly-coupled fluid.

Elliptic flow is in sensitive to viscous corrections.

Au+Au collisions

In heavy-ion collisions: 
2nd Fourier harmonic of the 
azimuthal particle distribution.

Φ

[Romatschke & Romatschke, PRL 99, 172301 (2007)]
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Why mesoscopic systems?  Interesting motivation from high-energy collisions.
Signals of collective particle emission at low multiplicities.

About 20 strongly-interacting particles per unit rapidity. 
Can that make a fluid?

[ATLAS Collaboration, PRC 97, 024904 (2018)]

=

genuine 4-body 
(non-Gaussian) 

correlation.

8



  

NB: understanding “small systems” is a very active research area.

- Emergence of the hydrodynamic attractor.
  Out-of-equilibrium hydrodynamics.

Motivation: can we attack these questions with cold atom experiments?

[Romatschke & Romatschke, arXiv:1712.05815]
[Giacalone, Mazeliauskas, Schlichting, PRL 123, 262301 (2019)]
[Berges et al., RMP 93 (2021) 3, 035003]

- Transition to fluid dynamics.
[Kurkela, Wiedemann, Wu, EPJC 79 (2019) 11, 965]
[Ambrus, Schlichting, Werthmann, PRD 105 (2022) 1, 014031]

“equilibration” parameter

hydro

hydro
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2. 
Cold atom gases as a probe of hydrodynamics.
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Why ultracold atom gases? First reason: interactions are tunable.

Values for lowest states of 6Li:

“unitary” limit

We can move from non-interacting to strongly-interacting systems.

Interactions at low momenta described by an s-wave scattering length parameter.

Tunable via a Feshbach resonance in presence of an external magnetic field.

[from Luca Bayha, PhD thesis, 
Heidelberg University (2020)]
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Elliptic flow used to reveal superfluid behavior of an ultracold Fermi gas.
NB: at low temperature, strongly-interacting Fermi gas is a gas of pairs (bosons). 

ballistic
expansion

non-interacting gas

strongly-interacting
 gas

ideal hydrodynamics

Second reason: we can play with the geometry of the system.

[Menotti, Pedri, Stringari, PRL 89, 250402 (2002)]
[O’Hara et al., Science 298 (2002) 2179-2182] 12



  

[from http://ultracold.physi.uni-heidelberg.de/02research/]

Transition from few-body to many-body physics.

Third reason [focus of this talk]: much less explored, the particle number is tunable!

Going “cold” brings dramatic advantages. Effective control over the number of particles. 

Our proposal: 
Study elliptic flow to assess emergent hydrodynamic behavior as a function of 
particle number (in two dimensions). 

[Serwane et al., Science 332 (2011) 6027]
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3. 
Elliptic flow as a function of particle number.

[Floerchinger, Giacalone, Heyen, Tharwat, PRC 105, 044908 (2022)]
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Measuring elliptic flow in mescoscopic samples.

1 – Resort to a statistical description, i.e., repeat the experiment many times like in 
heavy-ion collisions.

2 – Unlike in heavy-ion collisions, the orientation of the ellipse and the initial ellipticity, ε2, 
can be chosen.

3 – Let the system expand and measure the anisotropy of the system (e.g. <cos 2Φp>) 
with respect to the fixed axis. 

4 – Repeat the experiments for different number of atoms in the cloud.

single-particle measurement!

Natoms= 6
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Imposing an elliptical potential has a strong 
impact on the initial momentum distribution.

Calculate v2 from the quantum harmonic 
oscillator (initial momentum anisotropy).

Very important if we only have 2-3 particles.
However, it disappears quickly, like 1/N.

trapped
non-interacting

fermions

 1/N
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Qualitative expectations.
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Could there be a minimum?

Transition from quantum effects
to interaction effects?

Combining the curves… 
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4. 
Experiment.
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Atoms trapped on
this optical bench.

Few-body experiments run at the 
Physics Institute of Heidelberg University.

http://ultracold.physi.uni-heidelberg.de/

Main collaborators:
Selim Jochim (PI)
Sandra Brandstetter (PhD student)
Carl Heintze (PhD student)
Philipp Lunt (PhD student)
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Unique method to determine atom positions
and momenta in an expanding cloud.

For each atom one detects about 
20 photons per 20μs of exposure.

Localization fidelity: 99.4 ± 0.3%

[from Holten et al., Nature 606, 287-291 (2022)]

[Bergschneider et al., PRA 97, 063613 (2018)]

NB: Collapse of the wavefunction while system expands,
not when the expansion starts!
Fundamental difference w.r.t. heavy-ion collisions?
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APPLICATION: Observing the Pauli exclusion principle “by eye” (Pauli crystals).

Exclusion principle drives the average geometry away from isotropy.

Identify (non-interacting) atoms after some time of flight (magnification).

Rotate images and shift center-of-masses to common reference. 

single image
average image

[Holten et al., PRL 126, 020401 (2021)]
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5. 
Preliminary results.
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5+5 atomsε2=0.3
NO INTERACTIONS STRONG

 INTERACTIONS

Emergence of v2 from interactions.

When Eb = Eho, bosonic pairs appear. Onset of superfluidity? 
Energy dependence of effective viscosity? (superfluid = zero viscosity)

Interactions switched off
right after trap is released.

Remaining v2 is from the 
initial state, i.e., the initial
momentum anisotropy. 

 Eb = binding energy of one pair 
Eho = harmonic oscillator energy
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v2 as a function of particle number.

The conjectured minimum is observed!

ATOM NUMBER

QUANTUM
EFFECTS

ε2=0.3
QGP

HYDRO?
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Probe: Temporal evolution of the shape of the average cloud in coordinate space.

Is this a fluid expansion?

10 atoms

Have we observed hydrodynamics?
Elliptic flow defined in momentum space. Not directly computable in hydro. 
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Mass of 6Li

EoS for ideal Fermi gas (Pauli pressure):

=Pideal 

Hydrodynamic prediction?

We only need the pressure.

For a 2D Fermi gas at zero temperature,
this has been extensively studied.

[Levinsen, Parish,  Annual Review of 
Cold Atoms and Molecules, arXiv:1408.2737]

In the experiment: 
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Over what time scales are gradients effective?

Typical velocity is lower than speed of sound.
(Mach number ~ 0.5)

HYDRODYNAMIC RESULTS

https://pyro2.readthedocs.io/en/latest/index.html#
Compressible hydro solver developed at Stony Brook:

R~1 μm cs~25 μm/ms
x

y
t=0

Expansion is fairly “slow”.
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HYDRODYNAMIC RESULTS

Average shape directly comparable to experimental data.

The first mesoscopic fluid.

5+5 atoms
5+5 atoms

t=0

y

x

Ideal hydrodynamics naturally captures the time scale of shape inversion.
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CONCLUSION

● Hydrodynamics is an emergent behavior observed in systems across vastly 
different energy scales (superfluids at T=0, QGP at T~10¹² K)

● Cold atom experiments permit us to study emergent hydrodynamic behavior as a 
function of particle number and tunable interactions. 

● Quantum effects leading to elliptic flow vanish quickly with the particle number 
and as soon as interactions are turned on.

● We observe a large elliptic flow driven by interactions in a cloud of N~10 strongly 
interacting fermions. Ideal hydrodynamic results naturally explain the data. 
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PROSPECTS

● Study more observables (e.g. triangular flow, mean momentum).

● Further signals of superfluidity (rotational properties). 

● Connection with small systems in heavy-ion collisions? 

Certainly possible. We need to formulate conceptual issues.

● Alternative theoretical descriptions? Microscopic dynamics?
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Intersection of nuclear structure and high-energy nuclear collisions

Organizers:
Giuliano Giacalone (Heidelberg)
Jiangyong Jia (Stony Brook & BNL)
Dean Lee (Michigan State & FRIB)
Matt Luzum (São Paulo)
Jaki Noronha-Hostler (Urbana-Champaign)
Fuqiang Wang (Purdue)

Jan 23rd  - Feb 24th  2023

THANK YOU!
(and stay tuned)
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