

Investigation of group 8 metallocenes @ TASCA

Christoph E. Düllmann

Gesellschaft für Schwerionenforschung mbH, Darmstadt, Germany

The Bigger Picture

Why Hassocene?

Science

- -Group 8 metallocenes: 18 electrons
- -Ru(Cp), is the most stable metallocene!
- -Metal-ring bond strenght: Fe<Ru<Os

Why Hassocene?

Science

- -Group 8 metallocenes: 18 electrons
- -Ru(Cp)₂ is the most stable metallocene!
- -Metal-ring bond strenght: Fe<Ru<Os

 $\Delta \mathbf{H}_{\mathrm{sub}}$

73.4±1.1

76-83

73-80

??

Why Hassocene? Science

- Metallocenes: metal in formal 2+ state (though, ring-metal bonding mainly covalent)
 - → in contrast to past studies, where the metal was in its highest oxidation state
 - → influence of relativistic effects better visible?
- Due to large number of M(Cp)₂: many effects studied systematically across the Periodic Table
 - (example: competing S-O splitting vs. Jahn-Teller iollowing ionization)
- Highly symmetric systems with moderate number of atoms → fully relativistic 4c-DFT calculations planned

How Hassocene? Technical

Cp trivia

Cp is commercially available, it's cheap, comes

in dimeric form

For synthesis, the monomeric form is needed

→ Cracking (usually: thermal cracking @ T>180°C, or at lower temp. with catalyst)

Once cracked, it dimerizes within hours @ room temperature (Diels-Alder-reaction)

→ On-line cracking+distillation!!

Where Hassisene?

When Hassocene? Timeline

Early 2008:

Submit proposal to G-PAC, requesting beamtime for preparation experiments with lighter homologs

(Hopefully...) later in 2008:

Start with several rather short (3-5 shifts) runs as soon as beamtime is available

Hassocene

- If Hs(Cp)₂ is stable, preseparation should make its investigation possible
- Relatively high volatility expected
- 4c-DFT calculations to be carried out in our group
- Interesting science
- Experiments with Fe/Ru/Os(Cp)₂ should start in 2008