TECHNISCHE UNIVERSITÄT MÜNCHEN

TASCA 06 5th Workshop on Recoil Separator for Superheavy Element Chemistry

September 29, 2006, Garching, Germany

 Which SHE elements are relevant
 Comparison of chemical approaches with TASCA and without TASCA
 Future experiments

Which SHE elements are relevant

															2
									1.4	13	14	15	16	17	He
									1.10	5	6	7	8	9	10
2016									3 . 4	В	С	Ν	0	F	Ne
										13	14	15	16	17	18
3	4	5	6	7	8	9	10	11	12	AI	Si	Ρ	S	Cl	Ar
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
1.25	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo

Rf(hfacac)₂; Sg(CO)₆; HBhO₄; HsO₄

Volatile metals

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

- Volatile elements (metals), (hydro)oxides and new organometallic compounds are candidates for "new" gas phase chemistry
- Adosrption on a detector surface is most efficient

Comparison of chemical approaches

- Beam intensity
- Target thickness
- **Recoil transmission**
- Beam sensetive chemistry in RC
- Destroying of aerosols
- Preseparation
- **Detector to RC**
- Target contaminants

with TASCA ≥ 1 pµA 🙄 ~ 0.6 mg/cm² 😕 10...70% 😕

> yes no yes yes

no

without TASCA 0.3 – 1 pµA $\sim 1 \text{ mg/cm}^2$ ~100%

5 🙂	no
0	yes
5 🙂	no
s 🙂	no
©	yes

Possible future TASCA experiments <u>Based on mentioned above crucial points</u> <u>our suggested future experiments at TASCA</u>:

<u>Volatile</u> metals E114/E112 (vacuum) chromatography /with liquid metallic catcher/

Organometallic <u>compounds and</u> <u>carbonyls</u>

 $Rf(hfacac)_2$ ${}^{261}Rf$ gas phase chemistry $Sg(CO)_6$ ${}^{265}Sg$ gas phase chemistry

<u>(Hydro)oxides</u>

HBhO₄ and HsO₄

Nuclear spectroscopy of ²⁶¹Rf and ²⁶⁵Sg

What is common for all gas phase experiments?

High volatility of species under study
Chemical reaction in the RTC (if possible)
Detector as chromatographic channel
Directly connected to the RTC detector
No aggressive reagents
No aerosols

Question: How can we monitor chemical yield with lighter homologs?

Vacuum chromatography of E114/E112 at TASCA

Organometallic compounds, oxides and carbonyls: problems to solve

<u>Rf chemistry</u>

 Test experiments with Hf at BGS have been done by Ch.E. Düllmann et al.
 Continuation of these experiments at TASCA with Rf

<u>Sq chemistry</u>

Study of W(CO)₆ formation with single hot atoms
 Study of adsorption of W(CO)₆ moleculs

Bh and Hs chemistry

Study of kinetics of (hydro)oxides formation

We can overcompensate losses in chemistry with high detection efficiency Very low background after TASCA separator + chemistry

Conclusion

Experiments at TASCA – new challenges in gas phase chemistry

A lot of developments have to be done

What is the first future gas phase experiment?

E114/E112 gas or vacuum chromatography?

We have to give the answer as soon as possible
Combination of advantages of gas phase chemistry and preseparation in TASCA is important
Study of chemical and nuclear properties is possible