

Hot fusion studies at the BGS with light projectiles and ²³⁸U targets

Jacklyn M. Gates Lawrence Berkeley National Laboratory University of California, Berkeley

Preliminary results from a systematic study of hot fusion reactions with ions from ²²Ne through ³¹P and ²³⁸U targets

LAWRENCE BERKELEY NATIONAL LABORATORY

Principal Investigators:

Heino Nitsche Ken Gregorich (UCB Chemistry Faculty, group leader)

Postdoc: Liv Stavsetra

(244Pu Targets)

Graduate Students:

Irena Dragojevic Mitch Andre Garcia Jacklyn Gates Sarah Nelson (Cold fusion)(Gas phase chemistry)(Hot fusion; Db extraction chemistry)(Cold fusion)

Collaborators OSU, PSI/Bern, GSI, TUM, ANL

LAWRENCE BERKELEY NATIONAL LABORATORY

Detector Setup

²³⁸U(¹⁸O,xn)^{256-x}Fm (results from radiochemical experiments of Donets et al.)

²³⁸U(¹⁹F,xn)^{257-x}Md (results from radiochemical experiments of Donets et al.)

²³⁸U(²²Ne,xn)^{260-x}No (0.158 mg/cm² UF₄ targets, six-point excitation function completed) chopped beam, measured nobelium alpha singles during beam pause

²³⁸U(²³Na,xn)^{261-x}Lr (0.158 mg/cm² UF₄ targets, three-point excitation function completed) chopped beam, EVR-alpha correlations measured (EVR during beam pulse, alpha during pause)

²³⁸U(²⁶Mg,xn)^{264-x}Rf (0.471 mg/cm² UF₄ targets, six-point excitation function completed) DC beam short EVR-SF correlations for ²⁶⁰Rf and ²⁵⁸Rf. chopped beam for ²⁵⁹Rf, EVR during beam pulse, ²⁵⁹Rf alpha during pause

²³⁸U(²⁷AI,xn)^{265-x}Db (0.471 mg/cm² UF₄ targets, three-point excitation function completed) DC beam, EVR-Db alpha shut off beam to search for Lr daughter alpha

²³⁸U(³⁰Si,xn)^{268-x}Sg (0.471 mg/cm² UF₄ targets, four-point excitation function completed) DC beam, EVR-Sg shut off beam to search for Rf daughter alpha

²³⁸U(³¹P,xn)^{269-x}Bh (cross sections too small?)

²³⁸U(³⁴S,xn)^{272-x}Hs (upper limit from DGFRS)

²³⁸U(³⁷Cl,xn)^{275-x}Mt (~1.6 pb upper limit was not sensitive enough) DC beam, EVR with MWPC signal, alpha w/o MWPC, beam shutoff to search for daughters

²³⁸U(⁴⁰Ar,xn)^{278-x}Ds (0.7 pb upper limit from SHIP) LAWRENCE BERKELEY NATIONAL LABORATORY

²³⁸U(²⁶Mg,xn)^{264-x}Rf

²³⁸U(²⁷Al,xn)^{265-x}Db

²³⁸U(²²Ne,xn)^{260-x}No

x = 4nx = 5nx = 6n

²³⁸U(²³Na,xn)^{261-x}Lr

²³⁸U(²⁶Mg,xn)^{264-x}Rf

²³⁸U(²⁷Al,xn)^{265-x}Db

²³⁸U(³⁰Si,xn)^{268-x}Sg

Notes:

- Excitation functions measured for 4,5 and 6n of even-Z projectiles
- 2. Partial excitation functions for odd-Z projectiles
- 3. 6n is wider then 5n which is wider than 4n
- 4. Ratios of 4n/5n and 5n/6n remain constant

PRELIMINARY DATA:

Still changing weekly!

LAWRENCE BERKELEY NATIONAL LABORATOR

• EXTREMELY PRELIMINARY: still changing daily!

$$\frac{\Gamma_{n}}{\Gamma_{tot}}(49\text{MeV}) = \frac{\sigma_{5n}(49\text{MeV})}{\sigma_{4n}(41\text{MeV})} \frac{\sigma_{fus}(41\text{MeV})}{\sigma_{fus}(49\text{MeV})}$$
$$\frac{\Gamma_{n}}{\Gamma_{tot}}(57\text{MeV}) = \frac{\sigma_{6n}(57\text{MeV})}{\sigma_{5n}(49\text{MeV})} \frac{\sigma_{fus}(49\text{MeV})}{\sigma_{fus}(57\text{MeV})}$$

Reaction	$\Gamma_{\rm n}/\Gamma_{\rm tot}$ (57 MeV)	$\Gamma_{\rm n}/\Gamma_{\rm tot}$ (49 MeV)
¹⁸ O+ ²³⁸ U	1.11	0.28
²² Ne+ ²³⁸ U	0.66	0.16
²⁶ Mg+ ²³⁸ U	0.53	0.32
³⁰ Si+ ²³⁸ U	1.02	0.21

Conclusions:

- Preliminary results from a systematic study of hot fusion reactions with ions from ²²Ne through ³¹P and ²³⁸U targets
- 5n cross section always highest
- Cross sections show exponential decrease with increasing Z
- Odd-even effect increases with increasing Z?
- Systematics can be applied to reactions with other actinide targets

Future Experiments:

- Complete ²³⁸U(³¹P,xn)^{269-x}Bh
- Search for ²³⁸U(²⁶Mg,3n)²⁶¹Rf to assess possibilities for production of n-rich nuclides
- "Test to destruction" with small target wheel ⁴⁰Ar+²⁰⁸Pb