TASCA

# **Monte Carlo Simulations**

- \* "*hot*" fusion:  ${}^{22}Ne + {}^{244}Pu \rightarrow {}^{261}Rf + 5n$
- \* "*warm*" fusion:  ${}^{48}Ca + {}^{238}U \rightarrow {}^{283}112 + 3n$
- \* "cold" fusion:  ${}^{50}\text{Ti} + {}^{208}\text{Pb} \rightarrow {}^{257}\text{Rf} + 1n$
- to optimize target thickness and gas pressure

nchen

- to obtain transmission and relative rate

#### for

# DQ<sub>h</sub>Q<sub>v</sub> (high transmission) DQ<sub>v</sub>Q<sub>h</sub> (small image size) configurations

Monte Carlo program by K.E. Gregrorich, LBNL Magnetic Fields modeling in Efremov Institute

**A.Semchenkov** 

GSI. 15.05.2006





# Focal Plane Images pressure dependence - small image size: DQ<sub>v</sub>Q<sub>h</sub>

 $^{22}Ne(E_{lab} = 115 \text{ MeV CoT}) + {}^{244}Pu (200 \ \mu\text{g/cm}^2) \rightarrow {}^{261}\text{Rf} + 5n$ 



## Focal Plane Images <u>target thickness depend.</u> - small image size: $DQ_vQ_h$ <sup>22</sup>Ne(E<sub>lab</sub> = 115 MeV CoT) + <sup>244</sup>Pu (@ 0.1 mbar He) $\rightarrow$ <sup>261</sup>Rf + 5n



### Transmission and Rate – DQ<sub>v</sub>Q<sub>h</sub> mode = small image size <u>target thickness dependence</u> @ p(He) = 0.1 mbar

<sup>22</sup>Ne(E<sub>lab</sub> = 115 MeV CoT) + <sup>244</sup>Pu  $\rightarrow$  <sup>261</sup>Rf + 5n

#### Transmission of <sup>261</sup>Rf → a) focal plane flange ø15cm<sup>2</sup> b) 3x4 cm<sup>2</sup> RTC window

Relative rate of <sup>261</sup>Rf → a) focal plane flange ø15cm<sup>2</sup> b) 3x4 cm<sup>2</sup> RTC window



# Focal Plane Images and Trajectories pressure dependence – high transmission: $DQ_hQ_v$ <sup>22</sup>Ne(E<sub>lab</sub> = 115 MeV CoT) + <sup>244</sup>Pu (200 µg/cm<sup>2</sup>) $\rightarrow$ <sup>261</sup>Rf + 5n





## Monte Carlo Calculation: Transmission and Rate target thickness depend. – high transmission: DQ<sub>h</sub>Q<sub>v</sub>

<sup>22</sup>Ne( $E_{lab}$  = 115 MeV CoT) + <sup>244</sup>Pu (@ 0.3 mbar He)  $\rightarrow$  <sup>261</sup>Rf + 5n

Transmission of <sup>261</sup>Rf → a) focal plane flange ø15 cm<sup>2</sup> b) 14x4 cm<sup>2</sup> FPD / RTC window Relative rate of <sup>261</sup>Rf → a) focal plane flange ø15 cm<sup>2</sup> b) 14x4 cm<sup>2</sup> FPD / RTC window



Monte Carlo Calculation: Transmission and Rate<br/>small image size mode:  $DQ_vQ_h - 3x4 \text{ cm}^2 \text{ RTC}$ <br/> $^{48}Ca (E_{lab} = 235 \text{ MeV CoT}) + ^{238}U \rightarrow ^{283}112 + 3n$ <br/>pressure dependence<br/>@ 600 mg/cm² target thicknesstarget thickness<br/>@ p(He) = 0.4 mbar



Monte Carlo Calculation: Transmission and Rate high transmission mode:  $DQ_hQ_v - 14x4 \text{ cm}^2 \text{ FPD} / \text{ RTC}$  ${}^{48}\text{Ca} (E_{\text{lab}} = 235 \text{ MeV CoT}) + {}^{238}\text{U} \rightarrow {}^{283}112 + 3n$ 

#### pressure dependence @ 600 mg/cm<sup>2</sup> target thickness

#### <u>target thickness</u> dependence @ p(He) = 0.6 mbar



# Monte Carlo Calculation: Transmission and Rate small image size mode: $DQ_vQ_h - \emptyset 3 \text{ cm RTC}$ ${}^{50}\text{Ti}(E_{\text{lab}} = 235 \text{ MeV CoT}) + {}^{208}\text{Pb} \rightarrow {}^{257}\text{Rf} + 1\text{n}$

# <u>pressure</u> dependence @ 300 mg/cm<sup>2</sup> target thickness

#### <u>target thickness</u> dependence @ p(He) = 0.3, 0.4 and 0.6 mbar



## **TASCA** magnets KOMPOT simulations



# <sup>261</sup>Rf x-y-distribution in TASCA focal plane, DQ<sub>v</sub>Q<sub>h</sub> mode <sup>22</sup>Ne (E<sub>lab</sub> = 115 MeV CoT) + <sup>244</sup>Pu (200 µg/cm<sup>2</sup>) → <sup>261</sup>Rf + 5n

![](_page_12_Figure_1.jpeg)

#### <sup>261</sup>Rf x-y-distribution in TASCA focal plane, $DQ_hQ_v$ mode <sup>22</sup>Ne (E<sub>lab</sub> = 115 MeV CoT) + <sup>244</sup>Pu (400 µg/cm<sup>2</sup>) $\rightarrow$ <sup>261</sup>Rf + 5n

![](_page_13_Figure_1.jpeg)