TASCA separator - first test with ³⁰Si beam

Main tasks:

1. First transmission of the beam through TASCA

2. Comparison experimental results with <u>KOMPOT</u> model calculations

3. Study of ion-optical parameters of

Large Transmission and Small Image size modes of separator:

- horizontal and vertical magnification
- momentum dispersion
- momentum acceptance
- 4. Comparison with <u>TRANSPORT</u> calculations
- 5. Test of first version of Power supply control system

München

GSi Darmstadt

Main parameters of beams:

Parameter	First test	Second test
Particle	³⁰ Si	³⁰ Si
Energy	7.7 MeV/u	5.45 MeV/u
Total kinetic energy (TKE)	230.8 MeV	163.4 MeV
Charge state from accelerator	6 +	6+
Rigidity	2 Tm	1.7 Tm
Horizontal size in the target position	6 mm	6 mm
Vertical size in the target position	6 mm	6 mm
Maximum possible angular spread	< 3 mrad	< 3 mrad
Thickness of the Carbon foil	-	52 μg/cm ²
Total kinetic energy	-	162.8 MeV
Rigidity	-	1.68 Tm (6+)
Charge states	-	12+, 11+, 10+, 9+

G S i Darmstadt

TU München

TASCA test study with the ³⁰Si beam

Calculated by KOMPOT Dipole currents for different beam rigidities

🖬 🖬 🗴 Darmstadt

TU München

TASCA test study with a beam of ³⁰Si (6+) TKE= 230.8 MeV at L₃ in High Transmission DQ_HQ_V mode

TASCA test study with a beam of ³⁰Si (6+) TKE= 230.8 MeV at L₃ Small image size - DQ_VQ_H mode

I_D=480Α ΔΒρ₀≈-11% I_D=515Α ΔΒρ₀≈-5% I_D=555Α ΔΒρ₀≈0% I_D=595Α ΔΒρ₀≈+5% I_D=635Α ΔΒρ₀≈+10%

Luminophore grids step - 1 cmCharge state +6 ($B\rho_0=2.0Tm$).Beam size calculated by TRANSPORT - 2*13 mm²Currents in Quads: $I_{Q1}=450A$, $I_{Q2}=490A$.

TU München

Darmstadt

Initial beam parameters: X = Y = 6 mm, X'& Y' < 2 mradSeparator magnification (calculated): Horizontal – 0.3, Vertical – 2.5 Dispersion: calculated – 0.1 cm/% measured – 0.1 cm/%

Momentum acceptance:

A.Semchenkov

GSI, 15.05.2006

± 10 %

TASCA test study with a beam of ³⁰**Si, TKE = 162.8 MeV at L**₃. Currents in Quads: $I_{Q1}=0A$, $I_{Q2}=0A$. Measured dispersion 1.4 cm/%. Different charge state magnetic rigidity measurements for charge states 12+, 11+, 10+, 9+.

Conclusions:

- both High transmission and Small Image modes of separator has been studied;
- momentum acceptance of separator is at least ±9% for both modes;
- in Large Image mode TASCA has momentum dispersion
 ≈1cm/%, which can be easily tuned based on the task;
- in Small Image mode TASCA has momentum dispersion close to 0 cm/%, which can be easily tuned up to 0.2 cm/% depends on the task;
- studied parameters of horizontal and vertical magnification of the beam image is close to calculated and simulated;
- it is possible to use directly calculated magnetic fields from the KOMPOT model for magnet current settings. Error<1%.

J München

30 Si (162.8 MeV CofT) + 181 Ta (400 µg/cm²) -> 205 Fr + 3n, 205 Fr focal plane distributions

TASCA test study with a beam of ³⁰Si, TKE= 230.8 MeV

Charge	Rigidity,	$\Delta B \rho =$	Dipole magnet current	
state (Q)	Βρ (Tm)	$100*(B\rho_Q-B\rho_{Q-1})/B\rho_{Q-1}$	(\mathbf{A})	
	(LISE)	(%)	(KOMPOT simulations)	
+14	0.86	-	219	
+13	0.92	7.2	235	
+12	1.0	7.7	255	
+11	1.1	8.3	277	
+10	1.2	9.1	306	
+9	1.3	10.	342	
+8	1.5	11.	390	
+7	1.7	12.5	457	
+6	2.0	14.	559	
GSI D	armstadt	TU München GSI,	15.05.2006	

TASCA test study with a beam of ³⁰Si, TKE= 162.8 MeV

Charge state (Q)	Rigidity, Βρ (Tm) (LISE)	$ \begin{array}{c c} \Delta B \rho = \\ 100^{*}(B \rho_{Q} - B \rho_{Q-1}) / B \rho_{Q-1} \\ (\%) \end{array} $	Dipole magnet current (A) (KOMPOT)
+14	0.72	-	185
+13	0.77	7.2	199
+12	0.84	7.6	215
+11	0.92	8.4	234
+10	1.00	9.0	256
+9	1.12	10.0	285
+8	1.26	11.1	322
+7	1.44	12.5	372
+6	1.68	14.3	445
	armstadt	TU München GSI,	15.05.2006