

TASCA Target Group Status Report

K. Eberhardt for the TASCA Target Group

- New Target Station
- In-beam Performance of UF₄-Targets
- New Cell for Electrodeposition
- Outlook

TASCA Commissioning Kick-off Meeting / May 15th, 2006 @ GSI

Target Group Members

K. Eberhardt, J.V. Kratz, D. Liebe, P. Thörle

New members are always invited to join the group!

Target Group Meetings

Workshop on Recoil Separator for Superheavy Element Chemistry March 20 - 21, 2002, GSI, Darmstadt, Germany

BGS / ChemSep Workshop LBNL/Berkeley, November 21, 2003

<u>3rd Workshop on Recoil Separator for Superheavy Element Chemistry</u> (TASCA 04): August 27, 2004, GSI, Darmstadt, Germany

Working groups started on specific tasks \Rightarrow TASCA Target Group:

Targets (preparation, rotation, safety, control, cooling),

• Window	Dec. 10, 2004:	1 st TASCA Target Group Meeting	GSI
Collimator	March 2, 2005:	2 nd TASCA Target Group Meeting	GUTENBERG MAINZERSITÄT
	July 20, 2005:	3 rd TASCA Target Group Meeting	GSJ

<u>4th Workshop on Recoil Separator for Superheavy Element Chemistry</u> (TASCA05) October 6, 2005, Oslo, Norway

TASCA Target Group Meeting/TASCA Commissioning Kick-off Meeting May 15th, 2006 @ GSI

In-beam Performance of UF₄-Targets / ¹²C-beam

- Frames out of AIMg3, thickness: 0.5 mm
- Cold rolled foils out of
 Al 2.25 μm, 4.6 μm, 6.4 μm, 10 μm
 (Goodfellow + WANIT)

+

- backing
- Al +
- 2 10 µm

- thermal evaporation UF₄
- $350 450 \ \mu g/cm^2$
- (according to U)

→ Target performed well. No damage, no holes

- + covering layer
 - C
- + ~ 10 $\mu g/cm^2$

In-beam Performance of UF₄-Targets / ²⁶Mg-beam

- Cold rolled Al foils: different thicknesses and fabricates
- Cold rolled AI + evaporated UF₄ + C covering layer

- → Target unstable in beam
- → Search for alternative backing materials

Thermal Expansion (TR) of Backing and Target Materials

Thermal expansion coefficient at room temperature given in [μm/(m·K)] = 10⁻⁶ [1/K]

Handbook of Physics and Chemistry, 85th edition

UC = 10.0

Gmelin, Uranium compounds

Target Preparation by Electrodeposition (Molecular Plating)

Old Plating Cell

- Cathode: Ti-block, cooled in ice/water bath
- Anode: Coiled Pt (Rh) wire causes strong inhomogenity in electrical field
- Vessel: PEEK containing ca. 12 ml of organic solvent. No effective cooling of plating solution possible

New Plating Cell

- Material: PEEK
- Volume: about 16 ml
- Anode geometry corresponds to cathode (target) geometry. Electrical field homogenious
- Stirring of solution during deposition possible
- Basic cell design as proposed by H. Haba
- Effective cooling and temperature control during deposition

Plexiglas plate (2.0 mm)

→ Easy and safe target handling

Ho- and Gd-targets for TASCA Commissioning

Plating solution: 1.0 mg Ho/Gd in 16 ml 2-butanol Plating Voltage: 150 V Plating time: 5 h Temperature: 18 ℃ Target Area: 1.74 cm² Deposition Yield: > 90 % Target Thickness: > 500 µg/cm²

 \Rightarrow 9 targets (4x Ho and 5x Gd)

Ho (500 μ g/cm²) on Ti (5 μ m)

Outlook

Isotopic analysis of the actinide compounds used for target production by means of ICP-MS

Test and optimization of rotating target station for TASCA/BGS

U/Th-Oxide targets on different backings including carbon as backing material.

Optimize plating conditions for Th, U, Pu, Cm + Lanthanides. Imaging of U- and Thtargets before and after irradiation using autoradiography and TEM (at GSI)

Production of thin AI backing foils. Preparation of U/UF₄ targets (AI- /Ti- / C-backings). Test of inbeam target performance

