Next SHE (Chemistry) Experiments

Alexander Yakushev (TU Munich)

for SHE chemistry collaboration at TASCA

SHE for chemical studies

Element 104 - Rf

Nuclear reactions leading to Rf isotopes, which can be used for chemical separations:

²⁴⁴Pu(²²Ne,5n)²⁶¹Rf (70 s) ²³⁸U(²⁶Mg,5n)²⁵⁹Rf (3 s) ²⁰⁸Pb(⁵⁰Ti,1n)²⁵⁷Rf (4 s)

New gas phase chemistry with hexafluor-acetylacetonat complexes of Rf

Test experiments with Zr and Hf have been performed

Liquid phase chemistry: ion exchange or extraction

Element 105 - Db

Nuclear reactions leading to Db isotopes, which can be used for chemical separations:

```
<sup>243</sup>Am(<sup>22</sup>Ne;4,5n)<sup>260,261</sup>Db (1.5 s; 1.8 s)

<sup>238</sup>U(<sup>27</sup>Al;4,5n) <sup>260,261</sup>Db (1.5 s; 1.8 s)

<sup>209</sup>Bi(<sup>50</sup>Ti,1n)<sup>258</sup>Db (4 s)
```


Liquid-liquid extraction with SISAK

Gas phase chemistry with halides – detection in ROMA

Element 106 - Sg

Nuclear reactions leading to Sg isotopes, which can be used for chemical separations:

```
<sup>248</sup>Cm(<sup>22</sup>Ne,5n)<sup>265</sup>Sg (15 s)
```

²⁴⁴Pu(²⁶Mg,5n)²⁶⁵Sg (15 s)

²³⁸U(³⁰Si,5n)²⁶³Sg (0.3/0.9 s)

²⁴²Pu(²⁶Mg,5n)²⁶³Sg (0.3/0.9 s)

²⁰⁸Pb(⁵²Cr,1n)²⁵⁹Sg (0.5 s)

New gas phase chemistry with hexacarbonyl complexes of Sg

Liquid phase chemistry: ion exchange or extraction

Element 107 - Bh

Nuclear reactions leading to Bh isotopes, which can be used for chemical separations:

 243 Am(26 Mg,4n) 265 Bh (new isotope, $^{\sim}$ 1 s)

New gas phase chemistry with (hydroxy) oxide of Bh Liquid-liquid extraction with SISAK Gas phase chemistry with halides – detection in ROMA

Element 108 - Hs

Nuclear reactions leading to Hs isotopes, which can be used for chemical separations:

²³²Th(⁴⁸Ca,3-5n)²⁷⁵⁻²⁷⁷Ds \rightarrow (- α) ²⁷¹⁻²⁷³Hs (new isotopes)

Electro-deposition of Hs on noble metals (ELCH)

Test experiments with Os have been performed

Liquid phase chemistry: ion exchange or extraction

Chemical separation can be used for search for new isotopes and for decay spectroscopy studies under background-free conditions

Element 112 – (Cn)

Nuclear reactions leading to E112 isotopes, which can be used for chemical separations:

²⁸⁵ 112 29 s α

$242,244$
Pu(48 Ca,3n) 287,289 114 \rightarrow (- α) 283,285 112 (4 s, 30 s)

Comparative studies of E112 adsorption on metal surfaces and on an inert surface

Element 113

Nuclear reactions leading to E113 isotopes, which can be used for chemical separations:

²⁴³Am(⁴⁸Ca,3n)²⁸⁸115 \rightarrow (- α)²⁸⁴113 (0.5 s)

First chemical characterization: measurement of the volatility in the elemental state

Element 114

Nuclear reactions leading to E114 isotopes, which can be used for chemical separations:

²⁴²Pu(⁴⁸Ca,3n)²⁸⁷114 (0.5 s)

²⁴⁴Pu(⁴⁸Ca, 3-4n)^{288,289}114 (0.8 s, 2.6 s)

Comparative studies of E112 and E114 adsorption on metal surfaces and on an inert surface

Targets for SHE production

²⁰⁸ Pb	arge target wh	neel available

large target wheel available

large target wheel available

target available?

²⁴⁴Pu small wheel available

²⁴³Am small/large target available

large wheel available

Chemical apparatus

TASCA is used as preseparator

+

COMPACT or COLD for gas phase chemistry (~1 s) ELCH for electrochemistry (~10 s) SISAK for liquid-liquid extractions (~4 s) ARCA for ion exchange chromatography (~30 s)

using gas (aerosol) jet transport

Chemical separation thechniques

Liquid phase chemistry

Liquid-liquid extraction: SISAK, MicroSISAK

Ion exchange chromatography: ARCA

Gas phase chemistry

Thermochromatography: COLD, COMPACT..

Isothermal chromatography: OLGA-like + ROMA

Is element 113 a volatile metal?

1 H	S^2													p - elements					
3	4													7	8	9	10		
Li	Be					В	С	N	0	F	Ne								
11	12	d - elements										13	14	15	16	17	18		
Na	Mg	a - elements s^2d^{10}									Al	Si	P	S	Cl	Ar			
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36		
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr		
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54		
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	- 1	Xe		
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	-8 6		
Cs	Ва	La*	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	-kn		
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118		
Fr	Ra	Ac**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Ср	Uut	Juq	Uup	Uuh	Uus	Uuo		

Is element 113 a volatile metal?

Next SHE chemistry experiment at TASCA (I)

²⁴³Am(⁴⁸Ca,3n)²⁸⁸115
$$\rightarrow$$
 (- α)²⁸⁴113 (0.5 s) Uut ²⁸⁴113 (0.5 s) Uut

First E113 chemistry:

Study of volatility and adsorption on gold and/or an inert surface

Next SHE chemistry experiment at TASCA (II)

Hs chemistry and spectroscopy

Problems in SHE (chemistry) at TASCA

- Low cross sections
- Short lifetime
- Relative low overall efficiency

We need high intense beam and new stable targets!

- Targets on large wheel (if possible)
- Enlarged beam spot on the target
- New developments on target backing material
- Permanent on-line target control

Citius, altius, fortius...

COMPACT

AlBeGaS

MicroSISAK

AIDA - new generation of ARCA

Microchip

...Who? What? When?

2010: Finish data analysis and publication

Prepare new targets (244Pu, 243Am, 248Cm)

Finish tests for electrochemistry

Prepare a new detector AlBeGaS

If we have ²⁴³Am target, we are ready for E113 chemistry

2011... Experiments on chemistry (SISAK, ELCH)

and decay spectroscopy of Hs

Experiments on organometallic complexes

of Rf, Sg and Hs

