

Experiments beyond element 118

Christoph E. Düllmann

GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt

Presented on the 8th workshop on Recoil Separator for Superheavy Element Chemistry *TASCA 09*, October 15, 2009, GSI Darmstadt, Germany

Making elements 119 and 120

Beam	Target	CN	Zp x Zt	E*@Bb*	eff. fiss.
⁴⁵ Sc	²⁴⁹ Cf	²⁹⁴ 119	2058	41.7	0.904
⁵⁰ Ti	²⁴⁹ Bk	²⁹⁹ 119	2134	32.4	0.911
⁵¹ V	²⁴⁸ Cm	²⁹⁹ 119	2208	36.8	0.913
⁵⁴ Cr	²⁴³ Am	²⁹⁷ 119	2280	31.5	0.923
⁵⁵ Mn	²⁴⁴ Pu	²⁹⁹ 119	2350	37.7	0.922
⁵⁸ Fe	²³⁷ Np	²⁹⁵ 119	2418	29.9	0.934
⁵⁹ Co	238	²⁹⁷ 119	2484	36.7	0.933
Beam	Target	CN	Zp x Zt	E*@Bb*	eff. fiss.
Beam ⁵⁰ Ti	Target ²⁴⁹ Cf	CN ²⁹⁹ 120	Zp x Zt 2156	E*@Bb* 31.7	eff. fiss. 0.919
Beam ⁵⁰ Ti ⁵¹ V	Target ²⁴⁹ Cf ²⁴⁹ Bk	CN ²⁹⁹ 120 ³⁰⁰ 120	Zp x Zt 2156 2231	E*@Bb* 31.7 35.9	eff. fiss. 0.919 0.923
Beam ⁵⁰ Ti ⁵¹ V ⁵⁴ Cr	Target ²⁴⁹ Cf ²⁴⁹ Bk ²⁴⁸ Cm	CN ²⁹⁹ 120 ³⁰⁰ 120 ³⁰² 120	Zp x Zt 2156 2231 2304	E*@Bb* 31.7 35.9 33.0	eff. fiss. 0.919 0.923 0.926
Beam ⁵⁰ Ti ⁵¹ V ⁵⁴ Cr ⁵⁵ Mn	Target 249Cf 249Bk 248Cm 243Am	CN ²⁹⁹ 120 ³⁰⁰ 120 ³⁰² 120 ²⁹⁸ 120	Zp x Zt 2156 2231 2304 2375	E*@Bb* 31.7 35.9 33.0 34.5	eff. fiss. 0.919 0.923 0.926 0.934
Beam ⁵⁰ Ti ⁵¹ V ⁵⁴ Cr ⁵⁵ Mn ⁵⁸ Fe	Target 249Cf 249Bk 248Cm 243Am 244Pu	CN ²⁹⁹ 120 ³⁰⁰ 120 ³⁰² 120 ²⁹⁸ 120 ³⁰² 120	Zp x Zt 2156 2231 2304 2375 2444	E*@Bb* 31.7 35.9 33.0 34.5 33.9	eff. fiss. 0.919 0.923 0.926 0.934 0.934
Beam ⁵⁰ Ti ⁵¹ V ⁵⁴ Cr ⁵⁵ Mn ⁵⁸ Fe ⁵⁹ Co	Target 249Cf 249Bk 248Cm 248Cm 243Am 244Pu 237Np	CN 299120 300120 302120 298120 302120 302120 296120	Zp x Zt 2156 2231 2304 2375 2444 2511	E*@Bb* 31.7 35.9 33.0 34.5 33.9 32.9	eff. fiss. 0.919 0.923 0.926 0.934 0.934 0.945

*Myers+Swiatecki Masses 1996

Predicted cross sections

Element 119: ⁵⁰Ti+²⁴⁹Bk: 55 fb Element 120: ⁵⁰Ti+²⁴⁹Cf: 40 fb ⁵⁴Cr+²⁴⁸Cm: 25 fb ⁵⁸Fe+²⁴⁴Pu / ⁶⁴Ni+²³⁸U: 5 fb

FIG. 10. Excitation functions for production of the Z = 120 element in 3n and 4n evaporation channels of the ${}^{54}\text{Cr} + {}^{248}\text{Cm}$ (solid curves), ${}^{58}\text{Fe} + {}^{244}\text{Pu}$ (dashed), and ${}^{64}\text{Ni} + {}^{238}\text{U}$ (dotted) fusion reactions. The corresponding Bass barriers are shown by the arrows.

V.I. Zagrebaev & W. Greiner Phys. Rev. C 78 (2008) 034610 Expected half-lives of E119/120 isotopes Depends on location of next spherical proton shell closure

Various approaches: Macroscopic-microscopic (Mic-Mac) Skyrme-Hartree-Fock (SHF) **Relativistic Mean Field (RMF) Rel. Continuum Hartree Bogoliubov (RHFB)** Exp. / IBA-guided (P. Armbruster)

Macroscopic / Microscopic Model: Z=114

A. Sobiczewski

Proton gaps in self-consistent models: SHF and RMF Z=120 / 126 / 132 / 138

Skyrme Hartree Fock

Rel. Mean Field

K. Rutz et al., PRC 56 (1997) 238

Microscopic theories: RCHB. Z=120 (126, 132)

Fig. 6. The shell correction energies for proton E_{shell}^p as a function of proton number in RCHB.

Zhang et al., NPA 753 (2006) 106

SHF (SLy4): Z=126

Shape evolution

Cwiok et al., Nature 433(2005) 705

Magic regions, not magic numbers? Total (=neutron + proton) shell correction energy

Bender et al., Phys. Lett. B 515 (2001) 42

Eur. Phys. J. A **37**, 159–167 (2008) DOI 10.1140/epja/i2008-10607-5

Regular Article – Experimental Physics

Shifting the closed proton shell to Z = 122 —A possible scenario to understand the production of superheavy elements Z = 112-118

P. Armbruster^a

GSI Darmstadt, Planckstr. 1, D-64291 Darmstadt, Germany

Analysis of exp. $Q_{\alpha} \rightarrow Z=114$ not magic at Z=172-176

Periodicities over the whole chart of nuclides interpreted with "interacting boson approx." suggest Z=122

Observed SHE are NOT spherical but oblate! $B_f > S_n$ enhances survival \rightarrow large and constant σ , as observed

Armbruster's model: theory vs. experiment

P. Armbruster, Eur. Phys. J. A 37 (2008) 159

Conclusion

Most promising reactions for E119 and E120: ⁵⁰Ti+²⁴⁹Bk,²⁴⁹Cf. Cross sections << 1 pb.

Crucial: $T_{1/2}(\alpha)$ and $T_{1/2}(SF)$ to ensure survival of flight through separator

These depend on location of next spherical shell closures.

N=184 in most models.

Z: No agreement