TASCA Workshop 2009

TowardsSHIPTRAP@TASCA

Michael Block

Michael Block, GSI Darmstadt

SHIPTRAP Physics Program

SHIPTRAP Setup

SHIPTRAP Performance

Mass resolving power of **m**/ δ **m** \approx **100,000** in purification trap:

\Rightarrow separation of isobars

Mass resolving power of **m**/ δ **m** \approx **1,000,000** in measurement trap:

 \Rightarrow separation of isomers

Requirements for Mass Measurements

- high overall efficiency
- high cleanliness for low background
- stable and reliable operation over long time

Present reach of SHIPTRAP	
Half-lifeRate of trapped ions	> 100 ms > 0.01 / s

• mass measurements with 0.3 pps ($\sigma \approx ~200$ nb) demonstrated

Michael Block, GSI Darmstadt

Direct Mass Measurements of 252-254No

August'08:

²⁰⁶⁻²⁰⁸Pb(⁴⁸Ca,2n)²⁵²⁻²⁵⁴No

- doubly-charged nobelium ions extracted
- production rates $\approx 1 / s$

First direct mass measurements in the region Z > 100

April'09:

- ²⁰⁹Bi(⁴⁸Ca,2n)²⁵⁵Lr
- rate of incoming ions of ²⁵⁵Lr only 0.3 pps
- singly and doubly-charged ions extracted

TRAPspec: Trap-assisted Spectroscopy

Idea:combine high mass resolving power of Penning trapswith decay spectroscopy

Benefits:

- only one nuclide clean spectra
- detailed nuclear structure information in one experiment
- great potential for studies of isomers
 - •isomeric beams possible

TRAPspec Setup

Michael Block, GSI Darmstadt

TRAPspec commissioning experiment

The Route to higher Z

- improve production rates and targets
 - cw accelerator for SHE research

increase sensitivity and efficiency

- non-destructive detection system with single-ion sensitivity
- cryogenic gas stopper for high cleanliness and higher efficiency
- extend reach to more neutron-rich nuclides
 - hot-fusion reactions with actinide targetsconnection to gas-filled separator TASCA

Penning trap mass spectrometry

Mass via cyclotron frequency measurement $\nu_C = \frac{1}{2\pi} \frac{qB}{m}$

reference ion to calibrate magnetic field

$$v_{ref} = \frac{1}{2\pi} \frac{q_{ref} \cdot B}{m_{ref}}$$

Primary experimental Result: frequency ratio

$$\frac{V_{\text{Re}f}}{V_C} = \frac{m}{m_{ref}}$$

 \Rightarrow Atomic mass

$$m = \frac{q}{q_{ref}} \left(m_{ref} - q_{ref} \cdot m_e \right) \frac{V_{ref}}{V_c} + q \cdot m_e$$

Michael Block, GSI Darmstadt

Limitations for Mass Measurements

- with present technique about 100 ions have to be detected
- \rightarrow several hours measurement time for low production rates
- measurement time limited by temporal magnetic field fluctuations

Diplomarbeit C. Droese

Improvements for Rare Isotopes

Diplomarbeit C. Droese

Coupling of TASCA and SHIPTRAP

Gas-jet with Carbon-Aerosols at the TRIGA Mainz

Coupling of TASCA and SHIPTRAP: Ion Source (I)

High-pressure ECR source \Rightarrow currently developed at TRIGA Mainz

TRIGA-SPEC Experiment

Skimmer-Ionensource-unit at 60 kV

Skimmer MW-inlet ECR-magnet

Coupling of TASCA and SHIPTRAP: Ion Source (II)

BEARS-Projekt (LBNL): Powell et al., NIM A455 (2000) 452

Michael Block, GSI Darmstadt

Summary and Outlook

- first direct mass measurements of nobelium isotopes performed
- high-precision mass measurements of stopped rare isotopes with production rates of only 0.1 per second demonstrated
- trap-assisted decay spectroscopy successfully established at SHIPTRAP
- synergy with TRIGA-SPEC project for gas jet
- connection to TASCA will widen the range of accessible nuclides

Thank you for your attention !

Collaborators

- C. Breitenfeldt, D. Ackermann, K. Blaum, C. Droese, M. Dworschak,
- S. Eliseev, E. Haettner, F. Herfurth, F. P. Heßberger, S. Hofmann,
- J. Ketter, J. Ketelaer, H.-J. Kluge, G. Marx, M. Mazzocco, D. Nesterenko,
 - Yu. Novikov, W. R. Plaß, A. Popeko, D. Rodríguez, C. Scheidenberger,
 - L. Schweikhard, S. Stolze, P. Thirolf, G. Vorobjev, C. Weber
- For TRAPspec:
- D. Rudolph, L. Anderson, U. Forsberg, R. Hoischen, H. Schaffner, I. Kojouharov, ...

This page is empty on purpose.

Connecting SHIPTRAP to TASCA

- high transmission for asymmetric reactions
- actinide targets available
- highest separation not crucial
- long-lived chemistry isotopes suitable for SHIPTRAP
- gas jet transport routinely used

Entering the Gateway to the Transactindes

Extend direct mass measurements to higher Z

- ²⁰⁹Bi(⁴⁸Ca,2n)²⁵⁵Lr
- rate of incoming particles for ²⁵⁵Lr only 0.3 ions/s
- singly and doubly-charged ions extracted

²⁵⁵Lr nuclide with lowest rate ever measured in a Penning trap

Long time Measurements

Diplomarbeit C. Droese

Cyclotron Frequency Measurement

M. König et al., Int. J. of Mass Spectr. and Ion Proc. 142 (1995) 95

