

Measuring absolute transmission values of the RITU gas-filled separator

J. Sarén, J. Uusitalo, M. Leino

Department of Physics, University of Jyväskylä, Finland

TASCA2009 workshop, 14th of October 2009

Contents

- Instrumentation
- Reactions
- How the absolute transmission values were measured
- Detailed look to reaction ⁴⁰Ar+¹⁵⁰SmF
- Results

Instrumentation RITU (QDQQ), Jurogam, Great

Instrumentation

Focal plane setup: MWPC, DSSD, Planar, ...

PLANAR GE-detector for low-energy gamma-particles. It can be used for vetoing punch-through protons and alphas. Planar was not important in these transmission studies

Reactions

Beam	Elab [MeV]	Target	Pressure [mbar]	Thicknes s [ug/cm2]	Combound	Main evap. ch	Evap. Residue
40 Ar	- - 170 -	150 SmF	0.2 - 1.6	250	190 Hg	4n	186 Hg
		144 SmE	0.6	402	184 Ha	2n	182 Hg
		144 5111	0.0	402	104 Hy	p2n	181 Au
		150 Sm	0.6	400	190 Hg	4n	186 Hg
		170 Er	0.6	500	210 Pp	4n	206 Rn
		170 21			210 KI	5n	205 Rn
		120 Sp	0.6	500	160 Er	4n	156 Er
		120 311	0.0	500	TOOLI	5n	155 Er
84 Kr		90 Zr	0.7	500	174 Os	2n	172 Os
	336	92 Mo	0.7	600	176 Pt	2n	174 Pt
		nat Mo	variable				
20 Ne		168 Er	0.2 - 0.8	500	188 Pt	4n	184 Pt
	95	169 Tm	0.3	420	189 Au	4n	185 Au
		169 Tm	0.3	670	189	4n	185 Au

Well known nuclei in a same mass region were populated in fusion reactions with very different beam and target mass ratios (different asymmetry).

Principle of measuring transmission

Overall view

- Simple idea: using Ge-array to count how many interesting isotopes produced in the target and count how many of them is seen in a time window at the focal plane. Transmission is then ratio between these numbers.
- For each target:
 - Identifying the main evaporation channel(s) from mwpc-gated singles and gamma-gamma spectra
 - Tighting the time-of-flight gates
 - Selecting usable gamma-gamma pairs
- For different parameter (pressure, beam stop, ...)
 - Fitting gamma-gamma peaks and calculating a weighted average of those $\ \ \rightarrow$ absolute transmission
 - Fitting position distributions seen by DSSD and time-of-flight distributions (using sum of all gamma-gamma gates)
 - Correcting transmission with the center of horizontal distribution and detector dead times

Principle of measuring transmission Prompt gamma spectra: singles, gated, gamma-gamma

In the reaction ⁴⁰Ar+¹⁵⁰SmF the gamma energies of ¹⁸⁶Hg are difficult to see from the total **Jurogam singles** spectrum.

Demanding an event in the **MWPC** cleans spectra remarkably.

Gamma-gamma

coincidences are needed to extract a transmission.

Principle of measuring transmission

Using gamma-gamma coincidences to get image sizes and ToF

Principle of measuring transmission Fitting all usable gamma-gamma pairs

Details of reaction ⁴⁰Ar+¹⁵⁰SmF Time of Flight through RITU in function of He-pressure

The time of flights are directly proportional to gaspressure which corresponds to constant energy loss dE/dx.

TASCA2009 workshop, 14th of October 2009, J. Sarén

Details of reaction ⁴⁰Ar+¹⁵⁰SmF Image size in function of pressure

The horizontal width of the image at the DSSD behaves smoothly in function of pressure and it has a minimum around 1 mbar.

The width of the image in the vertical direction seems to increase linearly with increasing pressure due to multiple scattering in gas.

Details of reaction ⁴⁰Ar+¹⁵⁰SmF Detector rates in function of pressure

When the pressure is decreased the amount of scattered beam reaching the focal plane is increased dramatically.

In the Jurogamarray the counting rates are increasing linearly with increasing pressure due to reactions with beam and He.

Details of reaction ⁴⁰Ar+¹⁵⁰SmF Transmission through RITU in function of pressure

Transmission to both detectors, MWPC and DSSD behaves similarly. Both have the maximum value around 0.6 mbar.

TASCA2009 workshop, 14th of October 2009, J. Sarén

Details of reaction ⁴⁰Ar+¹⁵⁰SmF Magnetic rigidity, Bp, in function of pressure

A magnetic rigidity decreases smoothly with increasing pressure.

The calculated RITU dispersion 10mm/(1% in rigidity) and the center of horizontal distribution at DSSD were used to correct rigidity values.

Results

Beam	Elab [MeV]	Target	Pressure [mbar]	Thicknes s [ug/cm2]	Combound	Main evap. ch	Evap. Residue	Angular cone of the recoil [mrad]	Transmis sion to MWPC [%]	Transmis sion to DSSD [%]	Rigidity [Tm]	x sigma [mm]	y sigma [mm]	
40 Ar 1		150 SmF	0.2 - 1.6	250	190 Hg	4n	186 Hg	36,06	47.3(4)	33.0(4)	1.762(2)	34.1(7)	17.2(8)	with pressu
	_	144 SmF	0.6	402	184 Hg	2n	182 Hg	36,24	45.9(11)	31.6(9)	1.721(2)	35.5(8)	15.3(8)	
	_					p2n	181 Au	42,52	31.3(7)	21.9(6)	1.746(3)	36.4(12)	21(3)	
	170 -	150 Sm	0.6	400	190 Hg	4n	186 Hg	41,73	64.8(6)	47.5(4)	1.760(2)	34.4(5)	15.4(4)	
	170 -	170 Er 0.	0.6	500	210 Rn	4n	206 Rn	49,2	24.9(6)	16.1(4)	1.742(2)	35.0(7)	18.6(11)	
	_		0.0			5n	205 Rn	54,2	15.4(4)	9.2(5)	-	-	-	
		120 Sn	0.6	500	160 Er	4n	156 Er	43,86	47.8(3)	37.0(2)	1.515(2)	34.9(3)	13.65(9)	
						5n	155 Er	46,67	47.4(2)	36.2(2)	1.507(2)	35.0(3)	13.7(2)	
84 Kr		90 Zr	0.7	500	174 Os	2n	172 Os	17,89	77.1(10)	71.5(11)	1.376(2)	39.9(7)	4.74(10)	
	336	92 Mo	0.7	600	176 Pt	2n	174 Pt	18,87	57(4)	48(5)	1.418(4)	33(2)	5.4(2)	
		nat Mo	variable					0	?	?	-			
20 Ne	95	168 Er	0.2 - 0.8	500	188 Pt	4n	184 Pt	122,1	7.7(3)	nothing	_			
		169 Tm	0.3	420	189 Au	4n	185 Au	0	?	nothing	_			
		169 Tm	0.3	670	189	4n	185 Au	0	?	nothing				

Transmission to DSSD is always lower compared to transmission to MWPC because the MWPC detector is little larger and some recoils hit the wires inside MWPC. There is also a narrow supporting bar in other MWPC window.

It can be seen that reaction asymmetry affects strongly to transmission as expected. The calculated angular cone correlates with transmission (evaporations were simulated at the centers of the targets, cone is combined from the evaporation process and from scattering in the target).

Symmetric reaction gives the best transmission values, but an additional beam stopper must be used inside dipole to reduce scattered beam component.

Thank you