Status & future SHE study at RIKEN (Development of GARIS-II)

Daiya Kaji

Superheavy Element Laboratory Nishina Center, RIKEN, JAPAN

Contact address. E-mail: <u>daiya@riken.jp</u> TEL/Fax: +81-48-467-4964

Gas-filled recoil ion separator GARIS-II D. Kaji, K.Morimoto, N.Sato et al., RIKEN Accel. Prog. Rep. <u>42</u>, (2009).

Contents

1 Status of SHE study at RIKEN

- Lesson from GARIS
- **2** Development of GARIS-II
 - Design
 - Ion optical characteristics
 - Expected performance
- **3** Accelerator development in RIBF
 - Status of new injector development
- 4 Summary

1 Status of SHE study at RIKEN (Lesson from GARIS)

GARIS

One of the world active gas-filled recoil separator for SHE study

Cold fusion study by GARIS

GARIS

One of the world active gas-filled recoil separator for SHE study

²⁴⁸Cm target

350 ug/cm^{2 248}Cm₂O₃ on 2.0 um Ti backing foil (Preparation by electro-deposition after purification with ion exchange)

 Effective to stand against high intensity beam
 Enables SHE production in neutron rich-side

Hot fusion study by GARIS

GARIS + gas-jet system

Gas-jet coupled to GARIS as a pre-separator (Promising tool for next-generation SHE chemistry)

H. Haba, H. Kikunaga, D. Kaji et al., J. Nucl. Radiochem. Sci., 9 27(2008).

Difficulties in hot fusion study

	Pb/Bi-based fusion	Cm-based fusion		
Transmission	Ismission High (80%) Lo			
Background level	Low (Under 10 cps)	High (Over 10 kcps)		
Z_{max} search (<i>B</i> ρ Limit)	Z _{max} ≦ 118	Z _{max} ≦ 110		

2 Development of GARIS-II (Big project since the birth of GARIS)

GARIS-II (Photograph)

14-October-2009 **TASCA'09**

Schematic view

Parameters for all magnets

Q1	Max field grad. Bore radius Pole length	12.2 T/m 150 mm 330 mm	 Y focus (X defocus) better matching to D1 acceptance
D1	Pole gap Max field <mark>Deflecting angle</mark> Radius of central ray Entrance angle Exit angle	150 mm 1.69 T <mark>30 deg</mark> 1440 mm 0 deg 30 deg	Primary beam is separated
Q2	Max field grad. <mark>Bore radius</mark> Pole length	4.70 T/m <mark>300 mm</mark> 250 mm	
Q3	Max field grad <mark>Bore radius</mark> Pole length	5.27 T/m <mark>300 mm</mark> 450 mm	
D2	Pole gap Max field Deflecting angle Radius of central ray Entrance angle Exit angle	200 mm 0.86 T 7 deg 2850 mm 0 deg -7 deg	

D1 chamber

Parameters for all magnets

Q1	Max field grad. Bore radius Pole length	12.2 T/m 150 mm 330 mm	 Y focus (X defocus) better matching to D1 acceptance
D1	Pole gap Max field <mark>Deflecting angle</mark> Radius of central ray Entrance angle Exit angle	150 mm 1.69 T <mark>30 deg</mark> 1440 mm 0 deg 30 deg	Separation of ER from primary beam
Q2	Max field grad. <mark>Bore radius</mark> Pole length	4.70 T/m <mark>300 mm</mark> 250 mm	■ X focus (Y defocus)
Q3	Max field grad <mark>Bore radius</mark> Pole length	5.27 T/m <mark>300 mm</mark> 450 mm	■ Y focus (X defocus)
D2	Pole gap Max field Deflecting angle Radius of central ray Entrance angle Exit angle	200 mm 0.86 T 7 deg 2850 mm 0 deg -7 deg	Separation of ER from transfer product & LCP Light Charged Particles

Mechanical design & 3D magnetic field calculation by OPERA

http://www.ces-kbk.com/sdi-sp/vf/index.htm

Magnetic field measurement

TASCA'09

Ion optical characteristics

Beam envelope calculated by TRANSPOT

K. L. Brown et al.: SLAC Report 91 Rev. 1, 1974.

Characteristics of GARIS-II

	GARIS	GARIS-II
Configuration	$\mathbf{DQ}_{\mathbf{h}}\mathbf{Q}_{\mathbf{v}}\mathbf{D}$	$Q_v D Q_h Q_v D$
Bending angle [deg]	45 + 10	30 + 7
Total path length [m]	5.76 -0.6	54 m 5.12
Acceptance (X) [mrad]	±61	±48
Acceptance (Y) [mrad]	±57	±118
Solid angle [msr]	12.2 ×1.7	up 20.2
Max Brho [Tm]	2.16 13%	up 2.43
Filled gas	He He or (He/H ₂ mix	

Comparison (GARIS-II vs. World working gas-filled RS)

	DGFRS	BGS	RITU	GARIS	TASCA (HTM)	TASCA (SIM)	GARIS-II
Configuration	$\mathbf{DQ_hQ_v}$	$\mathbf{Q}_{h}\mathbf{D}_{h}\mathbf{D}$	$\mathbf{Q_v}\mathbf{D}\mathbf{Q_h}\mathbf{Q_v}$	$\mathbf{D}\mathbf{Q}_{\mathbf{h}}\mathbf{Q}_{\mathbf{v}}\mathbf{D}$	DQ _h Q _v	DQ _v Q _h	$Q_v D Q_h Q_v D$
Length [m]	4.0	4.7	4.7	5.8	3.5	3.5	5.1
Bend. Angle [deg]	23	25+45	25	45+10	30	30	30+7
Solid angle [msr]	8.8	45.0	10.0	12.2	13.1	4.3	20.2
Β ρ (max) [Tm]	3.10	2.50	2.20	2.16	2.40	2.40	2.43
Dispersion [mm/%]	7.5	20.0	10.0	9.7	9.0	1.0	17.7
Transmission [%]	41*	49-59*	?	40*	60*	36*	75

²³⁸U(⁴⁸Ca,3n)²⁸³112

Cross section : 3 pb ** Intensity : 2 puA Target thickness : 500 ug/cm² Transmission : 75%

* M. Shaedel, TASCA workshop 2006 (2006).
 ** Yu. Ts. Oganessian et al., Nucl. Phys. A 734, 195 (2004).

Installation into RILAC facility

Status of GARIS-II

3 Accelerator development in RIBF

SHE study in RIBF (Present)

New injector development

SHE study in RIBF (After 2011)

Summary

Finished !

GARIS-II is developing for hot fusion study.

 $\textbf{Design} \rightarrow \textbf{Construction} \rightarrow \textbf{Installation} \rightarrow \textbf{Commissioning}$

Finished !

(March-2010)

GARIS-II

- Configuration = Q_vDQ_hQ_vD
- Total flight path length = 5.12 [m]

Finished !

- Bending angle = 30 + 7 [deg]
- Solid angle = 20.2 [msr]
- Installation = RILAC facility

GARIS-II developers

Acknowledgements

- We would like to thank Y. Yano, Kubo, O. Kamigaito, H. Okuno, M. Kase, N. Fukunishi, M. Fujinawa, E. Ikezawa, Y. Watanabe, Y. Uwamino, and H. Sakamoto for design, construction, and installation of GARIS-II.
- GARIS-II was constructed by Sumitomo Heavy **Industry ltd.**
- This research was partially supported by a Grant-in-Aid for Specially Promoted Research, 19002005, 2007, from the Ministry of Education, Science, Sports and Culture, Japan.
- We would like to thank our family for continuous encouragement and hearty support.

