

Element 114 produced in ⁴⁸Ca + ²⁴²Pu at LBNL

J. Dvorak^{1,2}, L. Stavsetra¹, K.E. Gregorich¹, P.A. Ellison^{1,2}, I. Dragojević^{1,2}, M.A. Garcia^{1,2}, and H. Nitsche^{1,2}

¹Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ²Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, USA

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

SHE synthesized in ⁴⁸Ca + X at JINR in last 10 years

Decay chains finished with SF → separated from the known nuclei

Oganessian et al., Journal of Physics G: Nuclear and Particle Physics, 34, R165-R242 (2007)

Comparison of σ of Cold / Hot fusion reactions

Dubna results of ²⁴²Pu(⁴⁸Ca,2-4*n*)²⁸⁸⁻²⁸⁶114

- 24 decay chains in 2-4*n* channels
- σ_{3n} = 3.6 pb, σ_{4n} = 4.5 pb @ E_{LAB}= 244 MeV / E*= 41 MeV

10/15/200

^{48}Ca + $^{242}Pu \rightarrow ^{286,287}114$ at LBNL

21-30. January 2009

⁴⁸Ca beam at 88" cyclotron at LBNL

- 8 days of ⁴⁸Ca¹¹⁺ beam from AECR source
- Average intensity I=300-400 pnA,
- Energy in the center of the target $E_{LAB} = 244 \text{ MeV}, E^* = 41 \text{ MeV}$

 Beam intensity and target integrity controlled online by Rutherford detectors

²⁴²Pu targets

- 4 segments with 440, 340, 320, and 270 μ g/cm² of PuO₂ (>99.9% ²⁴²Pu)
- 2.4 μ m Ti backing

10/15/200

BGS

- First rigidity guess $B \rho = 2.18$ Tm, later changed to $B \rho = 2.24$ Tm,
- Transmission efficiency ~ 60%
- Focal plane detector covers
 9% in B ρ
- Ge clover detector behind BGS

Results – 2 decay chains observed + 2 SF-like events

Comparison with Dubna chains

Random rates

TABLE III. Expected numbers of random correlations for sequences: EVR-like event followed by SF, α -SF, and α - α -SF, for the two parts of the experiment, referred to by the magnetic settings of the separator. The evaluated random rates are calculated for a ± 1.5 -mm vertical position window and a time window of 20 seconds.

	2.18 Tm setting	2.24 Tm setting
EVR-SF	0.022	6.3×10^{-4}
EVR- α -SF	$4.3 imes 10^{-7}$	$3.7 imes 10^{-8}$
EVR- α - α -SF	$1.0 imes 10^{-10}$	$2.8 imes 10^{-12}$

Stavsetra et al., Physical Review Letters, 103, 132502 (2009)

RKELEY NATIONAL LABORATORY

13

10/15/200

Conclusion

- Element 114 produced in ²⁴²Pu(⁴⁸Ca,3-4*n*)²⁸⁷⁻²⁸⁶114 at LBNL
- Decay properties in agreement with those reported from Dubna
- Measured cross section lower than expected, but it can be a matter of statistics
- If you want to know more: Stavsetra *et al.*, Physical Review Letters, **103**, 132502 (2009)

+ Liv Stavsetra

Thank you for your attention