The First Main Beam Experiment of TASISpec

(The Good, The Bad and The Ugly)

- * The **TASISpec** setup
- * Details of first experiment
- Data Analysis
- * Problems

The TASISpec Detector Set-up

TASCA in Small Image Mode Spectroscopy

The **TASISpec** Detector Set–up

Details of the construction

Obtained using radioactive sources placed inside TASISpec

Obtained by comparing to values from our experiment

The Next Step in Superheavy Element Spectroscopy

* First main beam experiment run in May

- * Total beam integral 2.4E18
- * Results from a subset of runs, corresponding to some 25% of the collected data

Crossections for ²⁵³No

Alpha Particles Detected in the DSSSD

DSSSD p-side Beam off alpha spectrum

Alpha–Gamma Correlations

Gamma rays in prompt coincidence with 253No alpha

Alpha–Gamma–Gamma Coincidences

Addback + time gate

Alpha–Gamma–Gamma Coincidences

Addback + time gate + ONE crystal in each detector fireing

Looking at K-isomers

To create an implant–electron–gamma spectrum

- *Implant energy
- *Electron energy
- Chose a time gate between implant and electron
 Chose a time between electron and gamma

...et Voilà...?!

Energy of the ²⁵³No Implants

Beam On – implanted into the p-side of the DSSSD

Implant Energy Revisited

Seems possible to narrow gate to improve cleanliness

Electron Energy

Implant–electron correlation followed by at least 1 gamma ray

Ge Times

Times shown for 4 VEGA crystals + gated on 802 keV

Time Difference Between Implant–Electron

Counts for the three intense peaks from the K-isomer

The Final K-isomer Spectra

...and a comparison with Fritz spectrum from SHIP

Comparing Efficiencies

My efficiencies does not add up. Why??

Alpha paticles: 104700 (7.96–8.1 MeV && n–side)

Clover: 4.1(3)%, 4.3(1)%, 3.2(2)%

Cluster: 10.1(7)%, 11.2(3)%, 8.2(4)% Cluster: 20.3(20)%, 16.9(5)%, 13.4(7)% (NIM)

50(6)% 66(3)% 61(4)%

Comparing Efficiencies

Where do the data go? (Beam OFF only)

Looking at Cluster data to compare the numbers.

Good event requires:

Fast Trigger Count==1

No pileup flag

No re-trigger flag

From the events in the read-in structure:

100% comes trough to good/bad event sort

77% have fast trigger counter ==1 (the rest varies between 2–15)

77% have NO pileup flag (can only be YES or NO)

91 % have NO retrigger (can only be YES or NO)

In total 70% are good events by these standards. Reasonable?

Henning says YES!

Related

The numbers persist through the program!

Comparing the results from the two beam energies

Comparing mid target energy of 4.50 with 4.55 MeV/u

* Efficiency for the Ge not agreeing with previous measurements Germanium? Si–Ge correlations? In the data or in the code? Why are not all energies affected equally?
* Implant energy unknown. Can be bypassed!
* Scattering between the crystals?? Implement some kind of shielding in the future?

ALL INPUT IS GREATLY APPRECIATED!

The Next Step for Superheavy Element Spectroscopy

Lund University, SWE

Technische Universität München, DE

SI

Universität Mainz, DE

Scattering of Gamma Rays Between Crystals

Gates on 253No alpha on both p and n-side, Time gate of gamma Single energy <200

Sum energy 218–225 OR Sum energy 276–282 keV

Yes, the addback is working!

Alpha-gamma-gamma Correlation

7.9–8.2 MeV Si energy, max 1 crystal in each Ge–detector fireing

Implant-electron-gamma correlations

PRELIMINARY!!! 5ms ER->electron, electron=40-450 keV

DSSSD Implantation Profile

Hitpattern in 1D and 2D for the DSSSD

Dead Time Using the Full Set-up

Time difference between two subsequent incoming triggers

Possible or Desired Improvements

A setup under constant developement

- * Thicker implantation detector (0.31 -> 0.52 -> 1.0 mm)
- * 32-event block readout mode
- Pulse-shape electronics for DSSSD
- DSSSD for box

A new tool to explore superheavy elements

Alpha-gamma Correlation

Gating on gamma rays to see energy in Si detector

First Main Beam Experiment

Define K–Isomers in ²⁵³No

²⁰⁷Pb(⁴⁸Ca, 2n)²⁵³No

- * F.P. Hessberger; α – γ decay studies SHIP 2004
- * F. P. Hessberger; isomeric γ and CE decays SHIP 2007
- * A. Lopez–Martens; isomeric γ and CE decays Dubna 2007
- * R.–D. Herzberg; in–beam studies JYFL 2002
- * P. Reiter; in-beam studies ANL 2005

