

Metal-Carbonyl-Complexes: New perspectives in SHE chemistry and nuclear spectroscopy

Julia Even

Helmholtz-Institut Mainz, Mainz, Germany; Johannes Gutenberg-Universität Mainz, Mainz, Germany

For a CO collaboration:

HIM – Uni Mainz – GSI – PSI – Uni Bern – LBNL – UC Berkeley - JAEA

The CO-collaboration

<u>Johannes Gutenberg-Universität Mainz, Mainz, Germany</u> <u>Helmholtz-Institut Mainz, Mainz, Germany</u> <u>GSI Helmholtzzentrum für Schwerionenfoschung, Darmstadt, Germany</u> J. Even, A. Yakushev, Ch.E. Düllmann, J. Dvorak, W. Hartmann, D.Hild, E. Jäger, J. Khuyagbaatar, B. Kindler, J.V. Kratz, J Krier, B. Lommel, L. Niewisch, I. Pysmentska, B. Schausten, N. Wiehl

> <u>PSI Paul Scherer Institut, Villigen, Switzerland</u> <u>University Bern, Switzerland</u> R. Eichler, A. Türler, D. Wittwer

<u>LBNL Lawrence Berkeley National Laboratory, Berkeley, USA</u> <u>UC Berkeley, Berkeley, USA</u> O. Gothe, H. Nitsche

JAEA Japanese Atomic Energy Agency, Tokai, Japan M. Schädel

Outline

- Motivation
- Metal carbonyl complexes
- Experiments @ TRIGA Mainz research reactor
- Experiments @ TASCA recoil separator at GSI
- Outlook and perspectives
- Summary

- Very limited number of compounds
 - Rf: RfCl₄, RfBr₄, RfOCl₂
 - Db: (DbCl₅), DbBr₅, DbOCl₃
 - Sg: SgO₂Cl₂, SgO₂(OH)₂
 - Bh: BhO₃Cl
 - Hs: HsO₄, Na₂[HsO₄(OH)₂]
 - Cn and E114 in their elemental states

New compound classes, in which relativistic effects might be better visible, are of interest!

Limits of gas phase chemistry

Limits of gas phase chemistry

JGU

TransActinide Separator and Chemistry apparatus

TASCA @ G S i

TransActinide Separator and Chemistry Apparatus

J. Even et al., NIMA 638 (2011) 157 UNIVERSITÄT MAINA. Semchenkov et al., NIMB 266 (2008) 4153 Ch.E. Düllmann et al., NIMA 551 (2005) 528 M. Schädel, Eur. Phys. J. D 45 (2007) 67 HELMHOLTZ GEMEINSCHAFT Helmholtz-Institut Mainz

JGU

Binary Metal Carbonyl Complexes

5	6	7	8	9	10
V(CO) ₆	Cr(CO) ₆	Mn ₂ (CO) ₁₀	Fe(CO) ₅	Co ₂ (CO) ₈	Ni(CO) ₄
	Mo(CO) ₆	Tc ₂ (CO) ₁₀	Ru(CO) ₅	Rh ₂ (CO) ₈	
	W(CO) ₆	Re ₂ (CO) ₁₀	Os(CO) ₅	Ir ₄ (CO) ₁₂	

Highly symmetric complexes with zero valent central metal atoms

J. Am. Chem. Soc. 1999, 121, 10830-10831

Prediction of the Bond Lengths, Vibrational Frequencies, and Bond Dissociation Energy of Octahedral Seaborgium Hexacarbonyl, Sg(CO)₆

Clinton S. Nash* Bruce E. Bursten*

JOHANNES GUTENBERG UNIVERSITÄT MAINZ Relativistic effects might be visible

- General: M + CO @ high pressure (~300 bar)
- Hot Chemistry: "Baumgärtner's method" $^{235}U(n,f)\times Mo + Cr(CO)_6 \rightarrow \times Mo(CO)_6$

Not suitable for SHE-chemistry!!!!

Studied d-elements

1																	18
1 H	2											13	14	15	16	17	2 He
3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
11 Na	12 Mg	3	4	5	6	7	8	9	10	11	12	13 Al	14 Si	15 P	16 S	17 CI	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	57+ [*] La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87	88	89+"	104	105	106	107	108	11			112		114				
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	109	110	111	Cn	113		115	116	117	118
								Mt	Ds	Rg							
													-				

*	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
"	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

²⁴⁹Cf fission

²³⁵U fission

Nuclear fusion at TASCA

HELMHOLTZ

Experiment (a) the TRIGA Mainz reactor

Experiment @ the TRIGA Mainz reactor

Transport with pure N₂

Transport with N₂ / CO mixtures

UNIVERSITÄT MAINZ

Isothermal chromatography - IC

IC of Mo(CO)₆ on SiO₂

COMPACT @ TASCA

UNIVERSITÄT MAINZ

a-spectrum of 164,163W measured with COMPACT

HELMHOLTZ GEMEINSCHAFT Helmholtz-Institut Mainz

Thermochromatography

• Sg(CO)₆ and Hs(CO)₅ are now within reach

⇒ New compound classes of TAN are accessible, e.g., organometallic ones!

Isomeric states of ²⁶⁵Sg

Dissagreement with theory: Different calculations predict different ground states: (7/2+; 9/2+; 11/2+)

But None of these theoretical works predicts an occurrence of a long-lived isomeric state!

Ch.E.Düllmann, A. Türler, Phys.Rev.C 77, 064320 (2008).

HELMHOLTZ GEMEINSCHAFT Helmholtz-Institut Mainz

²⁴⁸Cm(²²Ne,5*n*)²⁶⁵Sg @ GARIS

GEMEINSCHAFT

HELMHOLTZ

ALpha-BEta-GAmma spectroscopy with chemically separated samples

Summary

- Carbonyl complexes of group 4-9 elements
- Fast, efficient, in-situ chemistry (yield > 50%)
- Physisorption on SiO₂ surface (-30 $^{\circ}$ C to -70 $^{\circ}$ C)
- Chemical and physical applications:
 - Access to a new **TAN-compound class**
 - TAN-carbonyl-chemistry opens the door for a new method in nuclear spectroscopy (Rf, Db, Sg, Bh, Hs,(Mt))

- Staff of the TRIGA reactor, the mechanical and electronics workshops at the Institute for Nuclear Chemistry, Uni. Mainz
- UNILAC operators, Target lab @ GSI
- Funding: BMBF and HIM

Thank you for your attention!

