Future Direction of the SuperHeavy Element Program at the 88-inch Cyclotron

Upgrades to the Berkeley Gas-Filled Separator

Before

Gregory K. Pang TASCA Workshop 2011 October 14, 2011 GSI, Darmstadt After

Experimental Program

Research Goals:

Production and decay of superheavy elements Nuclear structure of heavy element isotopes Chemical properties of the heaviest elements

Necessary upgrades to the beamline

Necessary upgrades to the beamline

Necessary upgrades to the beamline

Necessary upgrades to the beamline

BGS	Window	Gas Catcher	RFQ Trap 1	RFQ Trap 2	Extr. Accel.	Mass Anal.	Det. Box

Necessary upgrades to the beamline

Necessary upgrades to the beamline

Necessary upgrades to the beamline

BGS	Window	Gas Catcher	RFQ Trap 1	RFQ Trap 2	Extr. Accel.	Mass Anal.	Det. Box

Necessary upgrades to the beamline

Necessary upgrades to the beamline

Current design based off of segmented rfq

Extr.

Current ion transport simulations agree with velocity distribution and axial distribution approx.

Simulations (w/ current exp. param) match current

beam properties

RFQ

Trap 2

RFQ

Trap 1

Is this sufficient?

New designs are being explored to minimize timing pulse width

G.K. Pang, TASCA Workshop 2011

rrrr SHE Measurement of Z & A BERKELEY AB Necessary upgrades to the beamline Mass Anal. RFQ RFQ Gas Extr. Det. BGS Window Catcher Trap 1 Trap 2 Accel. Box

Two designs at the moment:

TOF-based system or Trochoid Mass Analyzer System Trochoid Mass Analayzer

Will depend on beam parameters from trapping/acceleration region

BERKELEY LAB

Beamline Schematic

Berkeley ANL Built	Purchase
-----------------------	----------

			Flow Control RTU								
	MPT 100		Baratron 121A CM	MPT 100	MPT 100	MPT 100		MPT 100			MPT 100
BGS Stuff	Gate Valve	Window Chamber	Gas Catcher	RFQ Trap 1	RFQ Trap 2	Extr. & Accel.	Gate Valve	Beam Line	Mass Analyzer	Gate Valve	Det. Box
			Gate Valve	Gate Valve	Gate Valve	Gate Valve		Gate Valve			Gate Valve
			Turbovac 151 D	Osaka TS443W	HiPace 400	HiPace 300		HiPace 300			HiPace 300
			Pirani 317	PPT 100	PPT 100	РРТ 100		PPT 100			РРТ 100
			Scrollvac SC 30D	Hepta Dry 300	Xtra Dry 100	Xtra Dry 100		Xtra Dry 100			Xtra Dry 100

New Focal Plane Detector – CCC Detector

Paper model of CCC detector – better than any picture of the real detector!

Punch-thru Detectors 3 x 64 mm x 64 mm DSSD's Operated in SSD mode 32 strips per side

Focal Plane Detectors 3 x 64 mm x 64 mm DSSD's 32 strips per side Upstream Detectors 6 SSD's 4 strips per detector

New Focal Plane Detector – CCC Detector

Detection efficiency gain for recoil – α – K (x-ray) [Z-ID]: 8.6

Detection efficiency for recoil – α – K (x-ray) [Z-ID]: 24%

3 Clover detector configuration G.K. Pang, TASCA Workshop 2011

- > Original completion date and shipped to LBL: End of January 2012 (yeah right)
- Expected completion date: Spring Summer 2012 (maybe...)
- Status of project: Early design phase for most beamline parts
 - > This requires both mechanical/vacuum and electrical aspects
 - > New focal plane almost working at 100%