

A new heavy-ion accelerator lab at University of Huelva

I. Martel

University of Huelva

ENERGY RESEARCH CENTRE

The main objective of the Energy Research Centre (CIE): promoting technical and scientific research of excellence, with specific emphasis in the development of renewable energies, fundamental research on structure of matter, and the transfer of technologies to industry: energy, aerospace, health, and new materials.

- Fundamental and applied research
- Investment in scientific infrastructures
- University research centre/ international users

http://www.uhu.es/gem/CIE/

Promoted by University-UHU and Technological Park –PCTH & research groups:

Engineering School -ETSI

FQM318 "Structure of Matter" (Applied Physics Department)

TEP 192: "Control and Robotics" (Dep. DIESIA)

TIC165: "Electronics Systems and Mechatronics" (Dep., DIESIA)

TEP 182: "Electro-technology and electronics" (Electrical engineering Department)

Hospital Juan Ramón Jiménez - Huelva: CTS 616: "Health research & oncology"

Ciemat -Madrid: "Fusion Technology"
CSIC-Madrid: "Structure of Matter"

The constitution of the Energy Research Centre was approved by Government Council of University of Huelva 20 December 2011,

- More than 50 permanent researchers/ 5 groups
- Administration and technical staff

Administrative structure → "University Research Centre" Centro de Investigación Universitario

- Vice-president of Research
- Government of the Centre:
 - Government Council: researchers and representatives.
 - Director, Deputy director, Secretary
 - Department representatives
 - Consultants: Research projects and technology transfer, Scientific Committee, Consultant

Council

DIRECTOR						
DEPARTMENTS						
Nuclear Technology and Structure of Matter	Modelling, instrumentation and control of renewable energy systems	Quality control of electrical power, energy efficiency and distributed generation				
32 scientists	16 scientists	10 scientists				
SCIENTIFIC INFRASTRUCTURES						

User oriented facility for producing intense HEAVY ION BEAMS for basic research on nuclear physics and applications. UNIVERSITY FACILITY (→students/masters/PhDs/etc).

→ OPEN INTERNATIONAL COLLABORATION ←

http://www.uhu.es/gem/LRF/

High intensity superconducting linac.

- Wide range of heavy ions
- Wide range of energies, from keV/u ~15 MeV/u
- Maximum intensity for HI (~100uA, ⁴⁰Ar)
- protons up to 30 MeV (~1 mA); up to 70 MeV (nA)

PROGRAM: Basic nuclear physics

- Nuclear reactions and spectroscopy with stable, high intensity, beams:
 - → European ECOS initiative for high energy accelerators:

Super-heavy ion physics & Nuclear astrophysics
→ long periods of beam time demanded

Nuclear structure studies at low medium and high-spin Clusters and molecules in nuclei Ground-state properties Near barrier transfer and fusion

IGISOL type ion source: stopped beams (beta-decay, beta-particle, masses, etc).

Health/Hospitals:

- Development of radiopharmaceuticals for cancer therapy
- Treatment of tumours by proton irradiation (proton therapy)

→ Proton-therapy & radio-pharmacy industry

Aerospace:

- Development and certification of electronics for aerospace.
 - → Aerospace industry (AEROPOLIS, INTA,)

New materials:

- Microfilters/membranes for industry.
- Surface modification by ion implantation.
 - → Semiconductor, biomedical, petrol industry (AIQB, CEPSA,)

Renewable energy:

- -Development of technologies for fusion energy production (international projects ITER, DEMO).
 - → Energy industry (IBERDROLA, ENDESA, EMPRESARIOS AG,...)

Radio- nuclide	Half- life	E mean (keV)	Eγ (keV)	Range
Y-90	64 h	934 β		12 mm
I-131	8 days	182 β	364	3 mm
Lu-177	7 days	134 β	208, 113	2 mm
Tb-161	7 days	154 β 5, 17, 40 e	75	2 mm 1-30 µm
At-211	7.2 h	5870 α		45 µm
Tb-149	4.1 h	3967 α	165,	25 µm
Er-165	10.3 h	5.3 e ⁻		0.6 µm

EUROPEAN UNION ERDF PROGRAM: European Regional Development Funds

- UNDEVELOPED REGIONS OF EUROPE (HUELVA)
- EU: > 75 % COST SUPPORT OF INFRASTRUCTURE
- PARTICIPATION OF LOCAL INDUSTRY

FINANCIACIÓN UE-FEDER		M euro	2011	2012	2013	2014	2015	2016	2017
INNPLANTA 2010	BUILDINGS	10.8							
INNPLANTA 2011	ACCELERATOR	15.4							
INNTERCONECTA-12	I+D+i	9							
INTERREG 2012	PROTONTHERAP.	10							
INNPLANTA 2012	FUSION TECH.	7.1							
?? UE 2013, 2014 ??, etc	Commissioning				_				

LRF- CONSTRUCTION PHASES

	Características	COSTE /Tiempo	Comentarios
FASE 1 Aeroespacio, Energía, Materiales	20 MeV protones 9 A MeV iones Pesados	15.5 Meur 3/4 años	Auxiliares, Cryogenia, Fuente de iones, LEBT, RFQ, 14 x SC + criomódulos, 2 x líneas de haz
FASE 2 Radioisótopos	55 MeV protones 15 A MeV iones pesados	6 Meur 3 años	14 x SC + criomódulos, Ext. Cryogenia, areas experimentales completas
FASE 3 Protonterapia/IGISOL	72 MeV protones 18 A MeV iones pesados	4 Meur 2 años	7 x SC + criomódulos

- -JOB CREATION
- -IMPROVE AND DEVELOP INDUSTRIAL CAPACITIES ON ACCELERATOR TECHNOLOGY AT EU & LOCAL INDUSTRY
- -PARTICIPATION IN LARGE SCIENTIFIC INFRASTRUCTURES

→ "INDUSTRY OF SCIENCE" ←

ACS, France	IBERDROLA, Spain
ADEVICE, Spain	IDOM, Spain
AIR LIQUIDE, France & Spain	I2FACTORY, Spain
ALTER TECHNOLOGY, Spain	INDRA, Spain
APLICACIONES	INGESER, Spain
TECNOLÓGICAS, Spain	JEMA, Spain
A-V-S, Spain	LINDE KRYOTECHNIK AG, Switzerland
CIBERNOS, Spain	& Spain
CRIOLAB, Portugal	PANTECHNIK, France
EBS Group, Italy & Spain	PRAXAIR, EEUU& Spain
ELYTT ENERGY, Spain	SEVEN SOLUTIONS, Spain
EMPRESARIOS AGRUPADOS, Spain	THARSIS TECHNOLOGY, Spain
	TTI NORTE, Spain

CONSTRUCTION & COMMISIONING PHASE Presidency of University of **Huelva** (Rector) **Int SCientific Committee (ISCC)** Vice-president of Research Chair ISCC General Director LRF LRF Scientific Coordinator **International STeering Committee Collaboration Institutes** (ISTC) **Direction LRF** Chair ISTC Vice-president of Research General Director LRF General Director LRF Technical Director **Int. Technical Committee (ITC)** Chair ISCC+ Chair ITAC Secretary Chair ITC **Directors of Collaboration Institutes** General Director LRF **Industry Coordinator** Technical Director **Project Management office** LRF Linac/Exp. Area Coordinators (PM) Members of collaboration Institutes **Project manager** Technical Director (+ Deputy) Project manager Administrative **Technical Director Working Group Budget & Funding Building** Control & data Linac **Beam Lines** Radioprotecti applications & construction economical construction on & safety management construction reports & concept issues & concept & concept

design

decign

design

SINERGIES WITH COMPLEMENTARY PROJECTS IN SPAIN

SINERGIES WITH COMPLEMENTARY PROJECTS IN SPAIN

ION SOURCE & INTENSITIES

Similar system to LEGIS del Laboratori Nazionali di Legnaro (Review of Scientific Instruments 81 (2010) 02A315).

Wide range of ions & high intensity: Commercial options/ ECR ion source (Pantechnik).

H 1+: 2 mA H ₂ 1+: 1 mA H ₃ 1+: 500 μA He 1+: 2 mA He 2+: 1 mA C 1+: 500 μA C 4+: 50 μA C 6+: 3 μA	Kr 1+: 1 mA Kr 14+: 15 μA Ag 4+: 250 μA Ag 20+: 4 μA Xe 1+: 500 μA Xe 26+: 5 μA Ta 14+: 4 μA; Ta 20+: 0.8 μA	
N 1+: 1 mA	Au 26+: 10 μA	
Ν 6+: 10 μΑ	Au 32+: 0.2 μA	ACT PM DD 3PQ 1PQ 3PQ PM
O 1+: 1 mA	Pb 20+: 10 μA	
Ο 6+: 200 μΑ	Pb 27+: 1μA	
Ne 1+: 1 mA		
Ne 8+: 25 μA	→238U 28+: 1µA	
Al 7+: 30 μA	→W 25+: 1-2 μA	
Si 9+: 20 μA		
Fe14+: 20 μA	→ Emittance 4 RMS < 0.3 mr	0 1 2 3 4 5 6 7 8 9 10
Ar 1+: 1 mA	→ Good intensity stability (< 6%	s/2h)
Ar 14+: 1 μA	, , ,	

The same of the sa

PRELIMINARY LINAC PARAMETERS AND CONFIGURATION

LRF-Huelva (P. Ostroumov, ANL)

Specifications:

- High intensity Heavy ion accelerator up to 15 MeV/u (40Ar 200uA, 130Xe 10 uA)
- H, D 1mA, 30 MeV; H, 1uA 72 MeV

→ limited by ECR ion source

Configuration:

- Ion source + Low Energy Beam Line
- 400 kV HV platform → (ion implantation & LE astrophysics)
- MBH: Multi Harmonic Buncher
- RFQ: "Radio Frequency Quadrupole" accelerator (injector)
- 35 SC cavities

Table 5	Me	in n	arameters	of the	Linac
Table 3	. IVIC	ши	arameters	or unc	Lillac

	Frequency, MHz	ВОРТ	Number of cavities	Comments
MHB*	36.375 (the 1st harmonic)	N/A	1	
RFQ	72.75	N/A	1	Based on ANL 60.625 MHz RFQ
QWR1	72.75	0.077	7	Design is available as ANL/ATLAS upgrade cryomodule
QWR2	109.125	0.15	7	Design is available as ANL/ATLAS upgrade cryomodule
HWR	181.875	0.25	14	Prototype cavity (f=170 MHz) was demonstrated at ANL

Huelva City 3 Km

COURTESY OF ALGAIDA S.L.

I. Martel, University of Huelva (Spain)

COURTESY OF IDOM S.A.

SUMMARY & CONCLUSIONS

A new superconducting high-intensity heavy-ion linac is being build at University of Huelva:

- High Intensity Superconducting Linac as base design (from the beginning)
- Using most modern SC technology (ANL, Spiral2, LNL, ...)
- Large range of ions & high intensities
 - → LRF STAGE: @ STARTING POINT
 - → OPEN COLLABORATION/ MACHINE CAPACITIES

http://www.uhu.es/gem/CIE/http://www.uhu.es/gem/LRF/

International collaboration:

ANL - Chicago, USA
CEA-Saclay, France
CENBG — Bordeaux, France
CIEMAT-Madrid, Spain
CMAM-Madrid, Spain
CNA-Seville, Spain
CSIC-Madrid, Spain
FSU-Tallahasee, USA
FLNR-Dubna, Russia
GANIL-Caen, France

GSI-Darmstadt, Germany

Hospital JRJ-Huelva, Spain
HIL-Warsaw, Poland
IFIC-Valencia, Spain
ISOLDE/CERN-Geneva, Switzerland
IPN-Orsay, France
KU-Leuven, Belgium
LNL-Leñaro, Italy
LNS-Catania, Italy
ORNL-Tenneesee, USA
RBI-Zagreb, Croatia
Univ. Birmingham, UK
Univ, Complutense-Madrid, Spain

Univ. Edimburg, UK
Univ. Granada, Spain
Univ. Huelva, Spain
Univ. Ioannina, Greece
Univ. Jyväskylä - JYFL, Finland
Univ. Padua, Italy
Univ. Salamanca, Spain
Univ. Seville, Spain
Univ. UNED-Madrid, Spain
Univ. UPV-Bilbao, Spain
Univ. Surrey, UK
Univ. York, UK
(...)

UNIÓN EUROPEA

