

²⁴⁹Bk target production and control

J. Runke¹, H. Brand¹, Ch.E. Düllmann^{1,2,3}, K. Eberhardt^{2,3}, E. Jäger¹, J. Khuyagbaatar^{1,3}, B. Kindler¹, J. Krier¹, B. Lommel¹, C. Mokry², J.B. Roberto⁴, K.P. Rykaczewski⁴, M. Schädel^{1,5}, P. Thörle-Pospiech², T. Torres¹, N. Trautmann², A. Yakushev¹

¹GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
²Johannes Gutenberg-Universität, Mainz, Germany
³Helmholtz-Institut Mainz, Germany
⁴Oak Ridge National Laboratory, Oak Ridge, TN, USA
⁵Japan Atomic Energy Agency, Tokai, Japan

TASCA12 Workshop, September 14, 2012, Darmstadt

Target-segment with 2.3 μm Tibacking-foil and Viton-O-ring

Complete Target-assembly with PEEK-cover

Target-segment on cathode-plate (Ti) with distance frame (Ti)

Molecular Plating cell with Ti-foil as cathode and Pd-foil as anode

Cell design according to H. Haba [RIKEN]

Courtesy A. Vascon

Determination of the plating yield

1. Gamma spectrum of ²⁴⁹Cf (388 keV and 333 keV) of the ²⁴⁹Bk sample in the vial was compared with those of the supernatant solution after the molecular plating procedure.

2. Before the plating procedure and then every 1 h 10 μ l of the plating solution were taken out and measured by α -spectroscopy to determine the ²⁴⁹Bk and ²⁴⁹Cf content.

From the decrease of the ²⁴⁹Bk and ²⁴⁹Cf α -activity the deposition yield was calculated in dependence of the plating time.

Deposition kinetics of ²⁴⁹Cf and ²⁴⁹Bk

Deposition kinetics of ²⁴⁹Cf and ²⁴⁹Bk

Prior to deposition and in 1-h steps 10 μ l aliquots of the ²⁴⁹Bksolution were evaporated to dryness for α -particle spectroscopy

 \Rightarrow identical plating behavior of both elements

Determination of the plating yield

1. Gamma spectrum of ²⁴⁹Cf (388 keV and 333 keV) of the ²⁴⁹Bk sample in the vial was compared with those of the supernatant solution after the molecular plating procedure.

2. Before the plating procedure and then every 1 h 10 μ l of the plating solution were taken out and measured by α -spectroscopy to determine the ²⁴⁹Bk and ²⁴⁹Cf content.

From the decrease of the ²⁴⁹Bk and ²⁴⁹Cf α -activity the deposition yield was calculated in dependence of the plating time.

3. The γ -lines of ²⁴⁹Cf of five targets were compared with each other at the same measuring time (one target as reference standard).

Yield determination by *γ*-spectroscopy

Amount of ²⁴⁹Bk on the targets (reference date 27.02.2012)

	Target thickness	Total amount of ²⁴⁹ Bk
Target 1	154 μg/cm ²	0.924 mg
Target 2	354 μg/cm ²	2.124 mg
Target 3	505 μg/cm ²	3.030 mg
Target 4	508 μg/cm ²	3.048 mg
Target 5	484 μg/cm ²	2.904 mg

High intensity target wheel at TASCA

Target wheel protection and monitoring tools

- Beam current intensity control
- Temperature control via pyrometer
- Off-line measurement of ingrowing ²⁴⁹Cf via alpha spectroscopy
- Visual inspection of target wheel with endoscopes

The TASCA gas-filled separator facility at GSI

The TASCA gas-filled separator facility at GSI

The TASCA gas-filled separator facility at GSI

TASCA beam control system Pyrometer: mechanical setup

TASCA beam control system (off line) Image of Bk targets through endoscope

One segment of the target wheel shown in 8 positions through endoscope and CCD camera

Summary

- Deposition of ²⁴⁹Bk by Molecular Plating
- Yield Determination: α-measurements γ-measurements
- Target wheel protection and monitoring tools

Thanks to:

The Target Laboratory at GSI for providing the Ti-backing foils

The Mechanical Workshop of the Institut für Kernchemie in Mainz for the construction of the deposition cells

....and you for your attention